Viewing Graph Solvability in Structure from Motion

Federica Arrigoni

federica.arrigoni@polimi.it

POLITECNICO
MILANO 1863

ISPRS TC II online talk series - September 20, 2023

Outline

- Introduction
- Calibrated Case
- Uncalibrated Case
- Calibrated vs Uncalibrated
- Conclusion

Outline

- Introduction
- Calibrated Case
- Uncalibrated Case
- Calibrated vs Uncalibrated
- Conclusion

Introduction

The goal of structure from motion (SfM) is to recover both camera motion and scene structure, starting from point correspondences in multiple images:

- camera motion = camera matrices/poses;
- scene structure = 3D coordinates of points.

O. Ozyesil, V. Voroninski, R. Basri, A. Singer. A survey of structure from motion. Acta Numerica (2017).

Introduction

Formally, the task is to compute camera matrices P_{i} and coordinates of 3D points M_{j} starting from image points m_{ij} such that the following equation is best satisfied:

In the calibrated case, calibration matrices are known and projection matrices consist of rotations and translations: $P_{i}=K_{i}\left[R_{i} \mathbf{t}_{i}\right]$

Introduction

Is $3 D$ reconstruction unique?
The solution is defined (at least) up to a global projective transformation:

$$
m_{i j} \simeq P_{i} M_{j}=P_{i} \underbrace{Q Q^{-1}}_{\begin{array}{c}
\downarrow \\
\text { identity }
\end{array}} M_{j}=\underbrace{\underbrace{2}}_{\begin{array}{c}
\downarrow \\
\text { new } \\
\text { cameras }
\end{array} \underbrace{P_{i} Q}_{\begin{array}{c}
\text { new } \\
\text { points }
\end{array}} \underbrace{Q^{-1} M_{j}}, \underbrace{2}}
$$

If cameras are calibrated, then the reconstruction ambiguity is represented (at least) by a global rotation, translation and scale.

Introduction

The task of solvability is to analyse the ambiguities inherent to the SfM problem:

- single transformation \rightarrow well-posed problem ∇
- multiple transformations \rightarrow ill-posed problem \mathbf{X}

There are many ways to approach SfM! $!$

Here we focus on a framework that recovers camera motion from two-view relationships only (no points):

- Essential matrix (calibrated)
- Fundamental matrix (uncalibrated)

Introduction

The problem can be represented as a viewing graph:

- Nodes = cameras/images
- Edges = two-view relations

Levi \& Werman. The viewing graph. CVPR 2003.

Introduction

For which graphs do we have a well-posed problem?

\checkmark A graph is called solvable if and only if the available two-view relationships uniquely (up to a single transformation) determine the cameras \rightarrow unique solution \mathbf{X} Otherwise it is called non solvable \rightarrow multiple (infinitely many) solutions

Introduction

Here we focus on solvability only (we do not address reconstruction).

	Calibrated	Uncalibrated
Solvability	Arrigoni \& Fusiello. Bearing-based network localizability: a unifying view. IEEE TPAMI (2019).	Levi \& Werman. The viewing graph. CVPR 2003. Rudi, Pizzoli \& Pirri. Linear solvability in the viewing graph. ACCV 2011. \square
Trager, Osserman, \& Ponce. On the solvability of viewing graphs. ECCV 2018.		
Arrigoni, Fusiello, Ricci \& Pajdla. Viewing graph solvability via cycle		
consistency. ICCV (2021).		

It is important to check solvability before running SfM:
∇ If the graph is solvable, the SfM problem is well-posed.
X If the graph is not solvable, the problem is ill-posed: no method will return a useful solution.

Outline

- Introduction
- Calibrated Case
- Calibration matrix is required in advance
- Reconstruction is metric (up to scale)
- Uncalibrated Case
- Calibrated vs Uncalibrated
- Conclusion

Reconstruction

True scene

The Calibrated Case
 Problem Formulation

The viewing graph is a graph where vertices correspond to cameras and edges represent essential matrices.

Each essential matrix can be decomposed into:

- Relative rotation $R_{i j}$
- Relative translation $t_{i j}$ (known up to scale)

The Calibrated Case Problem Formulation

Solvable graph \Leftrightarrow two-view transformations uniquely (up to a single rotation, translation \& scale) determine the camera poses.

- We consider a noiseless-case
- We split the problem into rotation and translation:

The Calibrated Case
 Problem Formulation

Solvable graph \Leftrightarrow two-view transformations uniquely (up to a single rotation, translation \& scale) determine the camera poses.

- We consider a noiseless-case
- We split the problem into rotation and translation:

$$
\begin{gathered}
R_{i j}=R_{i} R_{j}^{\top} \\
R_{i j}=R_{i} R_{j}^{\top} \\
=-R_{i} R_{j}^{\top} \mathbf{t}_{j}+\mathbf{t}_{i}
\end{gathered} \Longleftrightarrow \underbrace{-R_{i}^{\top} \mathbf{t}_{i j}}_{\mathbf{z}_{i j}}=\underbrace{-R_{i}^{\top} \mathbf{t}_{i}}_{\mathbf{x}_{i}}+\underbrace{R_{j}^{\top} \mathbf{t}_{j}}_{-\mathbf{x}_{j}} \quad \begin{aligned}
& \text { Consistency constraint } \\
& \text { between relative and } \\
& \text { absolute poses }
\end{aligned}
$$

\sim The magnitude of relative translations are unknown: $\left\|\mathbf{t}_{i j}\right\|=\left\|\mathbf{z}_{i j}\right\|=$?

The Calibrated Case
 Rotations

In which cases can we uniquely (up to a global rotation) recover camera rotations starting from relative rotations?

Given a spanning tree, a solution can be found by setting the root to the identity and propagating the consistency constraint:

$$
R_{i}=R_{i j} R_{j} \Leftrightarrow R_{i j}=R_{i} R_{j}^{T}
$$

Solvability for rotations \Leftrightarrow connected viewing graph

The Calibrated Case
 Translations

In which cases can we uniquely (up to translation \& scale) recover camera positions from pairwise directions?

- Nodes = unknown locations
- Edges = known directions
$\mathbf{u}_{i j}=\frac{\mathbf{x}_{i}-\mathbf{x}_{j}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|} \Longleftrightarrow \mathbf{u}_{i j} \times\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=0$

A solution can be found from the direction constraint, which is a linear equation!

The Calibrated Case
 Translations

Theorem. A graph is solvable if and only if $\operatorname{rank}(\mathrm{S})=3 n-4$

If the viewing graph is solvable, then the problem is well-posed.
X Otherwise, the problem is ill-posed: the largest solvable component has to be extracted \Leftrightarrow clustering rows in the null-space of S
[F. Arrigoni, A. Fusiello. Bearing-based network localizability: a unifying view. IEEE TPAMI (2019).
\square W. Whiteley. Matroids from Discrete Geometry. American Mathematical Society (1997)
R. Kennedy, K. Daniilidis, O. Naroditsky, C. J. Taylor. Identifying maximal rigid components in bearing-based localization. IROS (2012)

The Calibrated Case
 Translations

Solvability for translations \Leftrightarrow parallel rigid viewing graph

Definition. A graph is parallel rigid when all the configurations with parallel edges differ by translation and scale. Otherwise it is called flexible.

Parallel rigid

This is a well studied task!

An

[^0]
The Calibrated Case

Translations

A parallel-rigid graph must satisfy the following necessary conditions:

- it has at least (3n-4)/2 edges
- It is bridgeless (i.e., it remains connected after removing any edge).
- It is biconnected (i.e. it does not have articulation points meaning that it remains connected after removing any node).

The Calibrated Case
 Examples

- A single cycle of length 3 or 4 is parallel rigid, whereas longer cycles are flexible
- Union of rigid graphs with a common edge is also rigid \Rightarrow sufficient conditions

The Calibrated Case
 Examples

Dataset	nodes	\% edges	rigid	articulation	bridges
Arts Quad	5530	2	\boldsymbol{x}	30	10
Piccadilly	2508	10	\boldsymbol{x}	59	62
Roman Forum	1134	11	\mathbf{x}	28	28
Union Square	930	6	\mathbf{x}	60	68
Vienna Cathedral	918	25	\mathbf{x}	19	20
Alamo	627	50	\boldsymbol{x}	17	19
Notre Dame	553	68	\boldsymbol{l}	-	-
Tower of London	508	19	\mathbf{x}	19	19
Montreal N. Dame	474	47	\mathbf{x}	7	7
Yorkminster	458	26	\mathbf{x}	9	10
Madrid Metropolis	394	31	\mathbf{x}	17	15
NYC Library	376	29	\mathbf{x}	17	18
Piazza del Popolo	354	40	\mathbf{x}	8	9
Ellis Island	247	67	\mathbf{x}	6	7

Cornell ArtsQuad http://vision.soic.indiana.edu/projects/disco/ 1DSfM datasets http://www.cs.cornell.edu/projects/1dsfm/

The Calibrated Case
 Examples

Simplified representation: edges outside the largest rigid component are drawn.

Roman Forum

Arts Quad

The Calibrated Case

Summary

> Solvability for rotations \Leftrightarrow connected viewing graph Solvability for translations \Leftrightarrow parallel rigid viewing graph

- Parallel rigidity can be tested from the rank of a linear system.
- Maximal components can be extracted from the null-space of such a system.
- Large-scale datasets can be processed.

Outline

- Introduction
- Calibrated Case
- No assumptions
- Uncalibrated Case
- Reconstruction is projective
- Calibrated vs Uncalibrated
- Conclusion

The Uncalibrated Case
 Problem Formulation

The viewing graph is a graph where vertices correspond to cameras and edges represent fundamental matrices.

- Solvability depends on the graph and camera centres only.
- It can be reduced to a property of the graph only if we assume generic centres.

Solvable graph \Leftrightarrow it uniquely (up to a single projective transformation) determines a projective configuration of cameras.

The Uncalibrated Case
 Necessary Conditions

- A solvable graph has at least (11n-15)/7 edges.
- In a solvable graph, all the vertices have degree at least two and no two adjacent vertices have degree two (if $n>3$).

\square M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.
\square N. Levi and M. Werman. The viewing graph. CVPR 2003

The Uncalibrated Case Sufficient Conditions

- Triangulated graphs are solvable
- Constructive approaches are also available

\square M. Trager, M. Hebert, and J. Ponce. The joint image hand-book. ICCV 2015.
\square A. Rudi, M. Pizzoli, and F. Pirri. Linear solvability in the viewing graph. ACCV 2011.

The Uncalibrated Case
 Algebraic Characterization

Idea: characterize the set of projective transformations that represent all possible ambiguities of the problem.

First, let us identify the family of transformations that leave a single camera fixed.

> Proposition. Let P be a camera with centre c. All the solutions to $\quad P G=a P$ for $G \in G L(4, \mathbb{R})$ and $a \in \mathbb{R}_{\neq 0} \quad$ are given by $\quad G=a I_{4}+\mathbf{c v}^{\top} \quad \forall a \in \mathbb{R}_{\neq 0}, \mathbf{v} \in \mathbb{R}^{4}$

[^1]
The Uncalibrated Case
 Algebraic Characterization

What happens when we have multiple cameras, represented as a viewing graph?

Let us assign an unknown projective transformation $G_{i j}$ to every edge, and let us consider two edges (h, i) and (i, j) with a common vertex i.

Solvable graph $\Leftrightarrow G_{i j}=s_{i j} H$--------------
Single projective transformation
\square M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

The Uncalibrated Case
 Algebraic Characterization

- Polynomial system of equations with many unknowns

$$
\begin{gathered}
G_{h i} \in G L(4) \text { is unknown } \\
a_{h i j} \in \mathbb{R}_{\neq 0} \text { and } \mathbf{v}_{h i j} \in \mathbb{R}^{4} \text { are unknown } \\
\mathbf{c}_{i} \in \mathbb{R}^{4} \text { is known (camera center) } \\
(h, i) \text { and }(i, j) \text { are adjacent edges }
\end{gathered}
$$

M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

The Uncalibrated Case Reduced Formulation

- Polynomial system of equations with many unknowns

$G_{h i} \in G L(4)$ is unknown
$a_{h i j} \in \mathbb{R}_{\neq 0}$ and $\mathbf{v}_{h i j} \in \mathbb{R}^{4}$ are unknown
$\mathbf{c}_{i} \in \mathbb{R}^{4}$ is known (camera center)
(h, i) and (i, j) are adjacent edges

\square M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

- It is possible eliminate variables
\square Arrigoni, Fusiello, Ricci \& Pajdla. Viewing graph solvability via cycle consistency. ICCV (2021).

The Uncalibrated Case Reduced Formulation

- Each node is an edge in the input graph;
- Two nodes are linked if the corresponding edges are adjacent in the input graph.
- There is one equation for each edge in the line graph.

The Uncalibrated Case
 Reduced Formulation

How can we eliminate the \mathbf{G} variables?
Idea: $\quad Z_{12,23} \cdot Z_{23,42} \cdot Z_{42,12}=G_{12} \underbrace{G_{23}^{-1} G_{23}}_{I} \underbrace{G_{42}^{-1} G_{42}}_{I} G_{12}^{-1}=I$

- Each node is an edge in the input graph;
- Two nodes are linked if the corresponding edges are adjacent in the input graph.
- There is one equation for each edge in the line graph.

The Uncalibrated Case
 Reduced Formulation

cycle consistency (on all cycles) \Leftrightarrow cycle consistency (on a basis)

The Uncalibrated Case
 Algorithm

```
Algorithm 1 Viewing Graph Solvability
Input: undirected graph \(\mathcal{G}=(\mathcal{V}, \mathcal{E})\)
Output: solvable or not solvable
    1. randomly sample the camera centres
    2. compute the line graph \(\mathcal{L}(\mathcal{G})\)
    3. compute a cycle consistency basis for \(\mathcal{L}(\mathcal{G})\)
    4. set up equations
    5. compute the number \(s\) of real solutions
```


Gröbner basis

(symbolic computation)

```
    if \(s=1\) then
        solvable
    else
        not solvable
    end if
```

https://github.com/federica-arrigoni/solvability

The Uncalibrated Case Examples

Minimal viewing graphs with 9 vertices
Coses)

Solvable ∇

Not solvable \mathbf{X}

The Uncalibrated Case Examples

Execution times on minimal graphs

Nodes	10	20	30	40	50	60	70	80	90
Time	1.6 s	9 s	93 s	3 min	15 min	35 min	1 h	$\approx 2 \mathrm{~h}$	$>4 \mathrm{~h}$

Solvable graph with 20 nodes

Solvable graph with 50 nodes

Solvable graph with 90 nodes

The Uncalibrated Case
 Examples

Subgraphs with 9 nodes sampled from real structure-from-motion viewgraphs

Unsolvable

Solvable

	Solvable					Unsolvable		
Data set	by suff.	by Alg. 1	Tot.		by nec.	by Alg. 1	Tot.	
Alcatraz Courtyard	200	0	200		0	0	0	
Buddah Tooth	178	20	198		2	0	2	
Pumpkin	169	22	191		8	1	9	
Skansen Kronan	179	8	187		13	0	13	
Tsar Nikolai I	196	0	196		4	0	4	
Alamo	136	16	152		48	0	48	
Ellis Island	136	30	166		34	0	34	
Gendarmenmarkt	128	11	139		61	0	61	
Madrid Metropolis	88	28	116		84	0	84	
Montreal Notre Dame	140	12	152		48	0	48	
Notre Dame	165	18	183		17	0	17	
NYC Library	110	19	129		71	0	71	
Piazza del Popolo	105	22	127		73	0	73	
Piccadilly	109	23	132		68	0	68	
Roman Forum	114	28	142		58	0	58	
Tower of London	123	18	141		59	0	59	
Trafalgar	86	16	102	98	0	98		
Union Square	74	19	93		107	0	107	
Vienna Cathedral	122	8	130	70	0	70		
Yorkminster	116	14	130	70	0	70		
Cornell Arts Quad	76	23	99	101	0	101		
				0	0	0	0	

The Uncalibrated Case
 Summary

- Thanks to cycle consistency, less unknowns are involved than previous work:

	\#Eq.	\#Var.	\#Eq.	\#Var.	\#Eq.	\#Var.	\#Eq.	\#Var.	\#Eq.	\# Var.	\#Eq.	\#Var.
Our formulation	64	36	64	40	112	63	112	67	192	100	208	109
Trager et al.	128	120	144	141	224	198	240	219	352	286	384	312

- It is possible to classify previously undecided viewing graphs and extend solvability testing up to minimal graphs with 90 nodes.
- Larger/denser graphs can not be processed

Outline

- Introduction
- Calibrated Case
- Uncalibrated Case
- Calibrated vs Uncalibrated ------------> Uncalibrated solvability \Rightarrow calibrated solvability
- Conclusion

Calibrated vs Uncalibrated

Proposition. A solvable (uncalibrated) graph is parallel rigid.

Expected result!
Well-posed with uncalibrated cameras \Rightarrow well-posed with calibrated cameras
\square Arrigoni, Fusiello, Rizzi, Ricci \& Pajdla. Revisiting viewing graph solvability: an effective approach based on cycle consistency. TPAMI (2022).

Calibrated vs Uncalibrated

Proposition. A solvable (uncalibrated) graph is parallel rigid.

Proof [sketch].

Parallel rigid graph \Leftrightarrow for any partition of the edges: $\sum_{i=1}^{k}\left(3\left|\mathcal{V}_{i}\right|-4\right) \geqslant 3 n-4$
Solvable graph $\underset{i}{\Rightarrow}$ for any partition of the edges: $\sum_{i=1}^{k}\left(11\left|\mathcal{V}_{i}\right|-15\right) \geqslant 11 n-15$
Only necessary condition!
Unknown if the opposite holds
\square Arrigoni, Fusiello, Rizzi, Ricci \& Pajdla. Revisiting viewing graph solvability: an effective approach based on cycle consistency. TPAMI (2022).

Outline

- Introduction
- Calibrated Case
- Uncalibrated Case
- Calibrated vs Uncalibrated
- Conclusion

Conclusion

	Calibrated	Uncalibrated
Formulation	Linear system	Polynomial system
Datasets	Large-scale	Small-scale
Interpretation	Connected + Parallel rigid	$?$
Components	Null-space computation	$?$
		\vdots
	"Solved"	
		Open issues

References

1 F. Arrigoni, T. Pajdla \& A. Fusiello. Viewing graph solvability in practice. ICCV (2023).
\square F. Arrigoni, A. Fusiello, R. Rizzi, E. Ricci \& T. Pajdla. Revisiting viewing graph solvability: an effective approach based on cycle consistency. IEEE TPAMI (2022).
\square F. Arrigoni, A. Fusiello, E. Ricci \& T. Pajdla. Viewing graph solvability via cycle consistency. ICCV (2021). Best paper honourable mention
\square F. Arrigoni \& A. Fusiello. Bearing-based network localizability: a unifying view. IEEE TPAMI (2019).

Thank you for your attention!

Viewing Graph Solvability in Structure from Motion

Federica Arrigoni

federica.arrigoni@polimi.it

POLITECNICO
MILANO 1863

ISPRS TC II online talk series - September 20, 2023

[^0]: I O. Ozyesil, A. Singer. Robust camera location estimation by convex programming. CVPR (2015).

[^1]: \square M. Trager, B. Osserman, and J. Ponce. On the solvability of viewing graphs. ECCV 2018.

