Introducing a new benchmark dataset: Semcity Toulouse

A benchmark for building instance segmentation in satellite images

In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic segmentation annotation covering the same area plus an adjacent area 3 times larger.The data set addresses interested researchers from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning.

Further details and data download at: http://rs.ipb.uni-bonn.de/data/

WG II/6

Fig1

Fig2

Fig3

Fig4

White

White

Logo

The International Society for Photogrammetry and Remote Sensing is a non-governmental organization devoted to the development of international cooperation for the advancement of photogrammetry and remote sensing and their applications. The Society operates without any discrimination on grounds of race, religion, nationality, or political philosophy.

Our Contact

ISPRS
c/o
Leibniz University Hannover
Institute of Photogrammetry and GeoInformation
Nienburger Str. 1
D-30167 Hannover
GERMANY
Email: isprs-sg@isprs.org