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Unprecedented levels of air pollution in Singapore and Malaysia in June led to respiratory illnesses, school closings, and 
grounded aircraft.  This year it was so bad that in some affected areas there was a 100 percent rise in the number of asthma 
cases, and the government of Malaysia distributed gas masks.

MODIS  Aqua July 21, 2013.

David Lary
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Air pollution in Ulaanbaatar, Mongolia
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PM2.5 Invisible Killer
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Outdoor Air Pollution Kills 
2 Million People A Year
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0.0001 μm 0.001 μm 0.01 μm 0.1 μm 1 μm 10 μm 100 μm 1000 μm

Pollen

Mold Spores

House Dust Mite Allergens

Bacteria

Cat Allergens

Viruses

Heavy Dust

Settling Dust

Suspended Atmospheric Dust

Cement Dust

Fly Ash

Oil Smoke

Smog

Tobacco Smoke

Soot

Gas Molecules

Decreased Lung Function < 10 μm 

Skin & Eye Disease < 2.5 μm 

Tumors < 1 μm 

Cardiovascular Disease < 0.1 μm 

Hair

Pin

Cell

0.0001 μm 0.001 μm 0.01 μm 0.1 μm 1 μm 10 μm 100 μm 1000 μm

PM10 particles

PM2.5 particles

PM0.1 ultra fine particles PM10-2.5 coarse fraction

0.1 mm 1 mm

! 5!

Table!1.!PM!and!health!outcomes!(modified!from!Ruckerl*et*al.!(2006)).!

!!
Health*Outcomes!

Short9term*Studies* Long9term*Studies*
PM10! PM2.5! UFP! PM10! PM2.5! UFP!

Mortality* !! !! !! !! !! !!

!!!!All!causes! xxx!! xxx!! x! xx! xx! x!
!!!!Cardiovascular! xxx! xxx! x!! xx! xx! x!

!!!!Pulmonary! xxx! xxx! x! xx! xx! x!
Pulmonary!effects! !! !! !! !! !! !!

!!!!Lung!function,!e.g.,!PEF! xxx! xxx! xx! xxx! xxx! !!
!!!!Lung!function!growth! !! !! !! xxx! xxx! !!

Asthma!and!COPD!exacerbation! !! !! !! !! !! !!

!!!!Acute!respiratory!symptoms! !! xx! x! xxx! xxx! !!
!!!!Medication!use! !! !! x! !! !! !!

!!!!Hospital!admission! xx! xxx! x! !! !! !!
Lung!cancer! !! !! !! !! !! !!

!!!!Cohort! !! !! !! xx! xx! x!

!!!!Hospital!admission! !! !! !! xx! xx! x!
Cardiovascular!effects! !! !! !! !! !! !!

!!!!Hospital!admission! xxx! xxx! !! x! x! !!
ECG@related!endpoints! !! !! !! !! !! !!

!!!!Autonomic!nervous!system! xxx! xxx! xx! !! !! !!
!!!!Myocardial!substrate!and!vulnerability! !! xx! x! !! !! !!

Vascular!function! !! !! !! !! !! !!

!!!!Blood!pressure! xx! xxx! x! !! !! !!
!!!!Endothelial!function! x! xx! x! !! !! !!

Blood!markers! !! !! !! !! !! !!
!!!!Pro!inflammatory!mediators! xx! xx! xx! !! !! !!

!!!!Coagulation!blood!markers! xx! xx! xx! !! !! !!

!!!!Diabetes! x! xx! x! !! !! !!
!!!!Endothelial!function! x! x! xx! !! !! !!

Reproduction! !! !! !! !! !! !!
!!!!Premature!birth! x! x! !! !! !! !!

!!!!Birth!weight! xx! x! !! !! !! !!
!!!!IUR/SGA! x! x! !! !! !! !!

Fetal!growth! !! !! !! !! !! !!

!!!!Birth!defects! x! !! !! !! !! !!
!!!!Infant!mortality! xx! x! !! !! !! !!

!!!!Sperm!quality! x! x! !! !! !! !!
Neurotoxic!effects! !! !! !! !! !! !!

!!!!Central!nervous!system!! !! x! xx! !! !! !!
x, few studies; xx, many studies; xxx, large number of studies. 
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Hourly Observations from 52 Countries 
from 1996-present at a total of
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PM2.5 - AOD 
Relationship

Non-linear, function of wind speed, T, P, 
humidity, surface type, etc and prone to large 
biases in MODIS AOD algorithm due to 
surface reflectivity.

Literature studies have major issue in 
Western US (typical correlation coefficient 
0.2) better in Eastern US (typical correlation 
coefficient 0.6)
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REMOTE SENSING, MACHINE LEARNING AND PM2.5 4

Random Forests, etc.) that can provide multi-variate non-linear
non-parametric regression or classification based on a training
dataset. We have tried all of these approaches for estimating
PM2.5 and found the best by far to be Random Forests.

B. Random Forests
In this paper we use one of the most accurate machine learn-

ing approaches currently available, namely Random Forests
[53], [54]. Random forests are composed of an ensemble of
decision trees [55]. Random forests have many advantages
including their ability to work efficiently with large datasets,
accommodate thousands of input variables, provide a measure
of the relative importance of the input variables in the re-
gression, and effectively handling datasets containing missing
data.

Each tree in the random forest is a decision tree. A decision
tree is a tree-like graph that can be used for classification
or regression. Given a training dataset, a decision tree can
be grown to predict the value of a particular output variable
based on a set of input variables [55]. The performance
of the decision tree regression can be improved upon if,
instead of using a single decision tree, we use an ensemble
of independent trees, namely, a random forest [53], [54]. This
approach is referred to as tree bootstrap aggregation, or tree
bagging for short.

Bootstrapping is a simple way to assign a measure of ac-
curacy to a sample estimate or a distribution. This is achieved
by repeatedly randomly resampling the original dataset to
provide an ensemble of independently resampled datasets.
Each member of the ensemble of independently resampled
datasets is then used to grow an independent decision tree.

The statistics of random sampling means that any given tree
is trained on approximately 66% of the training dataset and
so approximately 33% of the training dataset is not used in
training any given tree. Which 66% is used is different for
each of the trees in the random forest. This is a very rigorous
independent sampling strategy that helps minimize over fitting
of the training dataset (e.g. learning the noise). In addition, in
our implementation we keep back a random sample of data not
used in the training for independent validation and uncertainty
estimation.

The members of the original training dataset not used in a
given bootstrap resample are referred to as out of bag for
this tree. The final regression estimate that is provided by
the random forest is simply the average of the ensemble of
individual predictions in the random forest.

A further advantage of decision trees is that they can provide
us the relative importance of each of the inputs in constructing
the final multi-variate non-linear non-parametric regression
model (e.g. Tables II and III).

C. Datasets Used in Machine Learning Regression
1) PM2.5 Data: As many hourly PM2.5 observations

as possible that were available from the launch of Terra
and Aqua to the present were used in this study. For
the United States this data came from the EPA Air
Quality System (AQS) http://www.epa.gov/ttn/airs/airsaqs/

TABLE II
VARIABLES USED IN THE MACHINE LEARNING ESTIMATE OF PM2.5 FOR
THE MODIS COLLECTION 5.1 PRODUCTS FOR THE TERRA AND AQUA
DEEP BLUE ALGORITHM SORTED BY THEIR IMPORTANCE. THE MOST

IMPORTANCE VARIABLE FOR A GIVEN REGRESSION IS PLACED FIRST WITH
A RANK OF 1.

Terra DeepBlue

Rank Source Variable Type

1 Population Density Input
2 Satellite Product Tropospheric NO2 Column Input
3 Meteorological Analyses Surface Specific Humidity Input
4 Satellite Product Solar Azimuth Input
5 Meteorological Analyses Surface Wind Speed Input
6 Satellite Product White-sky Albedo at 2,130 nm Input
7 Satellite Product White-sky Albedo at 555 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Layer Height Input
10 Meteorological Analyses Surface Ventilation Velocity Input
11 Meteorological Analyses Total Precipitation Input
12 Satellite Product Solar Zenith Input
13 Meteorological Analyses Air Density at Surface Input
14 Satellite Product Cloud Mask Qa Input
15 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
16 Satellite Product Sensor Zenith Input
17 Satellite Product White-sky Albedo at 858 nm Input
18 Meteorological Analyses Surface Velocity Scale Input
19 Satellite Product White-sky Albedo at 470 nm Input
20 Satellite Product Deep Blue Angstrom Exponent Land Input
21 Satellite Product White-sky Albedo at 1,240 nm Input
22 Satellite Product Scattering Angle Input
23 Satellite Product Sensor Azimuth Input
24 Satellite Product Deep Blue Surface Reflectance 412 nm Input
25 Satellite Product White-sky Albedo at 1,640 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
27 Satellite Product White-sky Albedo at 648 nm Input
28 Satellite Product Deep Blue Surface Reflectance 660 nm Input
29 Satellite Product Cloud Fraction Land Input
30 Satellite Product Deep Blue Surface Reflectance 470 nm Input
31 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
32 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input

In-situ Observation PM2.5 Target

Aqua DeepBlue

Rank Source Variable Type

1 Satellite Product Tropospheric NO2 Column Input
2 Satellite Product Solar Azimuth Input
3 Meteorological Analyses Air Density at Surface Input
4 Satellite Product Sensor Zenith Input
5 Satellite Product White-sky Albedo at 470 nm Input
6 Population Density Input
7 Satellite Product Deep Blue Surface Reflectance 470 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Ventilation Velocity Input
10 Meteorological Analyses Surface Wind Speed Input
11 Satellite Product White-sky Albedo at 858 nm Input
12 Satellite Product White-sky Albedo at 2,130 nm Input
13 Satellite Product Solar Zenith Input
14 Meteorological Analyses Surface Layer Height Input
15 Satellite Product White-sky Albedo at 1,240 nm Input
16 Satellite Product Deep Blue Surface Reflectance 660 nm Input
17 Satellite Product Deep Blue Surface Reflectance 412 nm Input
18 Satellite Product White-sky Albedo at 1,640 nm Input
19 Satellite Product Sensor Azimuth Input
20 Satellite Product Scattering Angle Input
21 Meteorological Analyses Surface Velocity Scale Input
22 Satellite Product Cloud Mask Qa Input
23 Satellite Product White-sky Albedo at 555 nm Input
24 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
25 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input
27 Meteorological Analyses Total Precipitation Input
28 Satellite Product White-sky Albedo at 648 nm Input
29 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
30 Satellite Product Deep Blue Angstrom Exponent Land Input
31 Meteorological Analyses Surface Specific Humidity Input
32 Satellite Product Cloud Fraction Land Input

In-situ Observation PM2.5 Target

detaildata/downloadaqsdata.htm and AirNOW http://www.
airnow.gov. In Canada the data came from http://www.
etc-cte.ec.gc.ca/napsdata/main.aspx. In Europe the data came
from AirBase, the European air quality database main-
tained by the European Environment Agency and the Euro-
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Random Forests, etc.) that can provide multi-variate non-linear
non-parametric regression or classification based on a training
dataset. We have tried all of these approaches for estimating
PM2.5 and found the best by far to be Random Forests.

B. Random Forests
In this paper we use one of the most accurate machine learn-

ing approaches currently available, namely Random Forests
[53], [54]. Random forests are composed of an ensemble of
decision trees [55]. Random forests have many advantages
including their ability to work efficiently with large datasets,
accommodate thousands of input variables, provide a measure
of the relative importance of the input variables in the re-
gression, and effectively handling datasets containing missing
data.

Each tree in the random forest is a decision tree. A decision
tree is a tree-like graph that can be used for classification
or regression. Given a training dataset, a decision tree can
be grown to predict the value of a particular output variable
based on a set of input variables [55]. The performance
of the decision tree regression can be improved upon if,
instead of using a single decision tree, we use an ensemble
of independent trees, namely, a random forest [53], [54]. This
approach is referred to as tree bootstrap aggregation, or tree
bagging for short.

Bootstrapping is a simple way to assign a measure of ac-
curacy to a sample estimate or a distribution. This is achieved
by repeatedly randomly resampling the original dataset to
provide an ensemble of independently resampled datasets.
Each member of the ensemble of independently resampled
datasets is then used to grow an independent decision tree.

The statistics of random sampling means that any given tree
is trained on approximately 66% of the training dataset and
so approximately 33% of the training dataset is not used in
training any given tree. Which 66% is used is different for
each of the trees in the random forest. This is a very rigorous
independent sampling strategy that helps minimize over fitting
of the training dataset (e.g. learning the noise). In addition, in
our implementation we keep back a random sample of data not
used in the training for independent validation and uncertainty
estimation.

The members of the original training dataset not used in a
given bootstrap resample are referred to as out of bag for
this tree. The final regression estimate that is provided by
the random forest is simply the average of the ensemble of
individual predictions in the random forest.

A further advantage of decision trees is that they can provide
us the relative importance of each of the inputs in constructing
the final multi-variate non-linear non-parametric regression
model (e.g. Tables II and III).

C. Datasets Used in Machine Learning Regression
1) PM2.5 Data: As many hourly PM2.5 observations

as possible that were available from the launch of Terra
and Aqua to the present were used in this study. For
the United States this data came from the EPA Air
Quality System (AQS) http://www.epa.gov/ttn/airs/airsaqs/

TABLE II
VARIABLES USED IN THE MACHINE LEARNING ESTIMATE OF PM2.5 FOR
THE MODIS COLLECTION 5.1 PRODUCTS FOR THE TERRA AND AQUA
DEEP BLUE ALGORITHM SORTED BY THEIR IMPORTANCE. THE MOST

IMPORTANCE VARIABLE FOR A GIVEN REGRESSION IS PLACED FIRST WITH
A RANK OF 1.

Terra DeepBlue

Rank Source Variable Type

1 Population Density Input
2 Satellite Product Tropospheric NO2 Column Input
3 Meteorological Analyses Surface Specific Humidity Input
4 Satellite Product Solar Azimuth Input
5 Meteorological Analyses Surface Wind Speed Input
6 Satellite Product White-sky Albedo at 2,130 nm Input
7 Satellite Product White-sky Albedo at 555 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Layer Height Input
10 Meteorological Analyses Surface Ventilation Velocity Input
11 Meteorological Analyses Total Precipitation Input
12 Satellite Product Solar Zenith Input
13 Meteorological Analyses Air Density at Surface Input
14 Satellite Product Cloud Mask Qa Input
15 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
16 Satellite Product Sensor Zenith Input
17 Satellite Product White-sky Albedo at 858 nm Input
18 Meteorological Analyses Surface Velocity Scale Input
19 Satellite Product White-sky Albedo at 470 nm Input
20 Satellite Product Deep Blue Angstrom Exponent Land Input
21 Satellite Product White-sky Albedo at 1,240 nm Input
22 Satellite Product Scattering Angle Input
23 Satellite Product Sensor Azimuth Input
24 Satellite Product Deep Blue Surface Reflectance 412 nm Input
25 Satellite Product White-sky Albedo at 1,640 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
27 Satellite Product White-sky Albedo at 648 nm Input
28 Satellite Product Deep Blue Surface Reflectance 660 nm Input
29 Satellite Product Cloud Fraction Land Input
30 Satellite Product Deep Blue Surface Reflectance 470 nm Input
31 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
32 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input

In-situ Observation PM2.5 Target

Aqua DeepBlue

Rank Source Variable Type

1 Satellite Product Tropospheric NO2 Column Input
2 Satellite Product Solar Azimuth Input
3 Meteorological Analyses Air Density at Surface Input
4 Satellite Product Sensor Zenith Input
5 Satellite Product White-sky Albedo at 470 nm Input
6 Population Density Input
7 Satellite Product Deep Blue Surface Reflectance 470 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Ventilation Velocity Input
10 Meteorological Analyses Surface Wind Speed Input
11 Satellite Product White-sky Albedo at 858 nm Input
12 Satellite Product White-sky Albedo at 2,130 nm Input
13 Satellite Product Solar Zenith Input
14 Meteorological Analyses Surface Layer Height Input
15 Satellite Product White-sky Albedo at 1,240 nm Input
16 Satellite Product Deep Blue Surface Reflectance 660 nm Input
17 Satellite Product Deep Blue Surface Reflectance 412 nm Input
18 Satellite Product White-sky Albedo at 1,640 nm Input
19 Satellite Product Sensor Azimuth Input
20 Satellite Product Scattering Angle Input
21 Meteorological Analyses Surface Velocity Scale Input
22 Satellite Product Cloud Mask Qa Input
23 Satellite Product White-sky Albedo at 555 nm Input
24 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
25 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input
27 Meteorological Analyses Total Precipitation Input
28 Satellite Product White-sky Albedo at 648 nm Input
29 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
30 Satellite Product Deep Blue Angstrom Exponent Land Input
31 Meteorological Analyses Surface Specific Humidity Input
32 Satellite Product Cloud Fraction Land Input

In-situ Observation PM2.5 Target

detaildata/downloadaqsdata.htm and AirNOW http://www.
airnow.gov. In Canada the data came from http://www.
etc-cte.ec.gc.ca/napsdata/main.aspx. In Europe the data came
from AirBase, the European air quality database main-
tained by the European Environment Agency and the Euro-
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New PM2.5 Product Using Machine Learning PI:David Lary

times! The value we use as our PM2.5 estimate is the average of these fifty independent
estimates, a very robust approach! The members of the original training dataset not
used in a given bootstrap resample are referred to as out of bag for this tree.

!
Figure! 1.! Validation! scatter! diagrams! showing! the! performance! of! the! machine!
learning! algorithm! for! the! two!MODIS! sensors! using! the! standard! and! Deep! Blue!
algorithms.!In!each!case!the!xCaxis!shows!the!observed!abundance!of!PM2.5!(μg/cm3)!
as! observed! by! inCsitu! instruments.! The! yCaxis! shows! the! abundance! of! PM2.5!
(μg/cm3)! estimated! by! the! machine! learning! based! on! the! satellite! and!
meteorological!data!products.!

!
!
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Aqua Standard, R=0.99, R2=0.98

Terra Standard, R=0.98, R2=0.97

Aqua DeepBlue, R=0.99, R2=0.98

Terra DeepBlue, R=0.99, R2=0.99

Figure 3: The quality of the machine learning fits are always quantified by scatter diagrams of
the observed ‘truth’ plotted on the x-axis against the corresponding machine learning
estimate plotted on the y-axis. A separate machine learning fit of PM2.5 is performed
for each satellite data product using a given algorithm and instrument.

A further advantage of decision trees is that they can provide us the relative im-
portance of each of the inputs in constructing the final multi-variate non-linear
non-parametric regression model. This is done by looking at the increase in the mean
squared error averaged over all the trees in the ensemble and divided by the standard de-
viation taken over the trees, for each variable. The larger this value, the more important
the variable.

1.5.2 Important Details

Attention to detail is critical to this approach. First, a highly restrictive coinci-
dent requirement for the training dataset. We only used hourly PM2.5 and satellite
observations that were made within 30 minutes of each other and had a great circle
separation up to only 0.02�. Second, a comprehensive training dataset spanning the
globe for more than a decade. Third, the use of the full range of training parameters

Solicitation: NNH13ZDA001N-TERAQ 8
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Machine Learning 
Estimate of PM2.5

Combine a total of about 30 variables

• In-situ observations

• Population Density

• Meteorological Variables

• Satellite Variables

Globally, every day from March 1, 2000-present
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! 12!

!
Figure*4.*The!global!average!of!our!estimated!daily!noon!±!three!hours!PM2.5!abundance!
(μg/cm3)! on! a!⅓°! grid! (approximately! 30! km)! over! the! 4,474! days! from!March! 1,! 2000!
through!March!31,!2012.!To!ensure!a!representative!comparison!we!have!overlaid!the!long@
term!mean!of!the!daily!in@situ!PM2.5!observations!for!those!grid!points!for!which!we!have!
both! an! estimate! and! an! observation! for! at! least! one! third! of! the! days! of! the! averaging!
period!(March!1,!2000!through!March!31,!2012).!The!regions!of!high!PM2.5!abundance!are!
labeled!and!discussed!in!the!text.!
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! 14!

!

!
Figure!6.!Example!timeseries:!The!large!top!panel!is!for!El!Paso,!TX,!showing!the!periodic!
dust! events.! The!dust! events! typically! come! from! the!Chihuahuan! and!Big!Bend!Deserts.!
The!inset!shows!the!major!dust!event!of!15!April!2003!documented!by!Rivera*et*al.!(2009)!
that!was!faithfully!captured!by!our!analysis.!The!lower!panels!show!timeseries!for!various!
cities!around!the!world.!

04/04 04/09 04/14 04/19 04/24 04/29
0

10

20

30

40

50

60

70

80

90

100

April 2003

Thursday, October 24, 13



Big Picture

The relationships between Asthma admissions 
and environmental variables are clearly:

• Non-Gaussian

• Multi-variate

• Non-linear

• There is a different relationship to 
environmental variables for ER,  In-Patient, 
and Out-Patient admissions
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Non Gaussian Distributions
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Mutual Information

I X,Y( ) = p x, y( ) log
p x, y( )

p x( ) p y( )y∈Y
∑

x∈X
∑

The mutual information of two variables is a quantity that 
measures the mutual dependence of the two variables. 

Intuitively, mutual information measures the information that 
X and Y share: it measures how much knowing one of these 
variables reduces uncertainty about the other.
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Multi-Variate
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Aqua ag412
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A Haboob (Arabic: هَبوب “strong 
wind”, or “blowing furiously.”)
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NRL High-resolution Dust Source Database

20030820 NRL DEP20030820 NRL DEP

Iran

Pakistan

Iran

Pakistan

• 10 years of DEP (2 yr MSG/RGB) imagery
• COAMPS 10 m wind overlays 
• Surface weather plots 
• ENVI (Gis-like software)
• NGDC topographical 10ºX10º tiles
• Overlay 0.25º grid or use Google Earth (GE)

• Dust source area entered into database
   (cursor location tool = 1km precision)
• Cross-correlate land and water features
   using maps, atlases, Landsat images
   (detailed topographic, geographic, 
    and geomorphic information, GE) 
• Technical and governmental reports

Approach and Methodology

20110630 NRL MSG/RGB

Saudi 
Arabia

20030820 MODIS True Color20030820 NRL DEP

Iran

Pakistan
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NRL High-resolution Dust Source Database

Solid red and purple shapes identify dust source 
areas located using DEP and MSG.

SW Asia DSD East Asia DSD

Mongolia

Saudi 
Arabia
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Self-Organizing Map
SOMs reduce dimensionality by 
producing a map that objectively plots 
the similarities of the data by grouping 
similar data items together. 

SOMs learn to classify input vectors 
according to how they are grouped in 
the input space. 

SOMs learn both the distribution and 
topology of the input vectors they are 
trained on. This approach allows SOMs 
to accomplish two things, reduce 
dimensions and display similarities.
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Detecting Dust Sources
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Self Organizing Map Classification

7 Bands
MODIS MCD43C3

bihemispherical reflectance 
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Sudan Dust Event: April 18, 2010 (6Z – 8Z)
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Sudan Dust Event: April 18, 2010 (6Z – 8Z)

Plumes originate from southern Sahel

Corresponding SOM-Classes: 175, 177, 648
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Chad: Ennedi Plateau Dust Event: April 9, 2010

Plumes originate from southern Sahel

Corresponding SOM-Classes: 175, 177, 648
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Chad: Bodélé Depression 
Dust Event: March 16, 2010 (7Z -12Z)

Located at the southern edge of the Sahara Desert in north central Africa, is the lowest point in Chad. Dust storms from the Bodélé Depression occur on 
average about 100 days per year. The Bodélé depression is a single spot in the Sahara that provides most of the mineral dust to the Amazon forest.
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Selected SOM Classes

Chad: Bodélé Depression 

NRL MSG-RGB 20110109

Source area is not 
designated in first pass of 
MODIS reflectance and land 
surface classification.

1000 SOM Classes
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Selected Classes with Class 137

Chad: Bodélé Depression 

NRL MSG-RGB 20110109

Class 137 maps diatom 
sediment in depression.

1000 SOM Classes
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Selected Classes Without Class 137

Chad: Bodélé Depression 

NRL MSG-RGB 201101091000 SOM Classes

Class 137 maps diatom 
sediment in depression.
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West Africa: Feb 2, 2011 13Z 
Dust plumes regional location

Northern (Sahara: Algeria, Mali)
 Tidikelt
 Highlands west of Hoggar mountains
 Edges of Taoudeni basin
Southern (Sahel: Mauritania, Senegal)
 Between Tangant plateau and Bambouk mountains
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Solid black circles/ovals show plume source 

Corresponding SOM Classes within open circles/ovals

Northern Sahara: 36, 40, 63, 100
                 Sahel: 147, 229, 230, 405

West Africa: Feb 2, 2011 13Z 
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All 1000-Classes mapped for North America
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Jan 1, 2006 True Color

Jan 1, 2006 NRL DEP

Sources along New Mexico/Texas border

The North American sources have a different 
spectral signature than those we saw in SW Asia

Agricultural on high planes
Blue dessert areas

Thursday, October 24, 13



Plume Head Locations 

34.45 N, 103.15 W East of Clovis, NM
34.29 N, 103.65 W    NW of Floyd, NM
33.78 N, 103.15 W         SW of Lingo, NM
32.72 N, 103.25 W     West of Hobbs, NM

Corresponding SOM-Classes
551, 552, 608                   N/S High Plains

Jan 1, 2006 NRL DEP

Sources along New Mexico/Texas border
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Sources in Arizona and Colorado 

Apr 17, 2006 NRL DEP

Apr 17, 2006 True color
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Sources in Arizona and Colorado 

Apr 17, 2006 NRL DEP

Plume Head Locations 

35.85 N, 111.34 W Painted Desert, AZ
35.75 N, 111.15 W  Painted Desert, AZ
37.85 N, 106.22 W        N of La Garita, CO
37.60 N, 106.20 W             S of Torres, CO

Corresponding SOM-Classes
218, 228, 229, 249      Painted Desert,  AZ 
258, 260 
  
513, 521, 525, 526     San Luis Valley, CO
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Selected Classes for North America (n=64)
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Selected Classes for North America (n=64)

SOM Classes in 500’s corresponded to agricultural areas in the high plains.  

The selected SOM Classes for Africa did not have one Class in the 500s.
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All 1000-Classes mapped for South America
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All 1000-Classes mapped for South America

Blue colored SOM-Classes are concentrated in 
Atacama and Salar de Uyuni deserts
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All 1000-Classes mapped for South America

Blue colored SOM-Classes are concentrated in 
Atacama and Salar de Uyuni deserts

White areas are salt flats
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South America: Bolivia and Chile

July 21, 2009  MODIS Terra True Color 
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South America: Bolivia and Chile

July 18, 2010  MODIS Terra True Color 
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South America: Bolivia and Chile

July 18, 2010  MODIS Terra True Color Selected SOM-Classes in 200s, 300s, and 400s
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South America: Bolivia and Chile

July 18, 2010  MODIS Terra True Color Selected SOM-Classes in 200s, 300s, and 400s

Edges of small salt lakes are 
mapped as point sources
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http://holistics3.com
David.Lary@utdallas.edu
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