

http://holistics3.com David.Lary@utdallas.edu

Comprehensive Data

California Children Example

Think Big: Holistic & Comprehensive Informatics

MODIS Aqua July 21, 2013.

North-Sumatra

Malacca Strait

Rupat Island

Riau

Malaysia

David Lary

Unprecedented levels of air pollution in Singapore and Malaysia in June led to respiratory illnesses echool closings, and grounded aircraft. This year it was so bad that in some affected areas there was a 100 percent rise in the number of asthmatic cases, and the government of Malaysia distributed gas masks.

141.05

Air pollution in Ulaanbaatar, Mongolia

Thursday, October 24, 13

PM2.5 Invisible Killer

Outdoor Air Pollution Kills 2 Million People A Year

If the world were a village of 100 people

If the world were a village of 100 people

Fine Particulate Matter Size Comparison

 $\mu m = micrometer$

	Short-term Stud		idies Long-ter		erm Stu	rm Studies	
Health Outcomes	PM10	PM2.5	UFP	PM10	PM2.5	UFP	
Mortality							
All causes	XXX	XXX	X	XX	XX	x	
Cardiovascular	xxx	xxx	x	xx	xx	x	
Pulmonary	XXX	xxx	x	xx	xx	x	
Pulmonary effects							
Lung function, e.g., PEF	XXX	xxx	XX	xxx	xxx		
Lung function growth				xxx	XXX		
Asthma and COPD exacerbation							
Acute respiratory symptoms		XX	x	xxx	xxx		
Medication use			X				
Hospital admission	XX	xxx	x				
Lung cancer							
Cohort				xx	xx	x	
Hospital admission				xx	XX	x	
Cardiovascular effects							
Hospital admission	XXX	xxx		x	x		
ECG-related endpoints							
Autonomic nervous system	XXX	xxx	XX				
Myocardial substrate and vulnerability		xx	x				
Vascular function							
Blood pressure	XX	xxx	x				
Endothelial function	X	XX	X				
Blood markers							
Pro inflammatory mediators	XX	XX	xx				
Coagulation blood markers	XX	XX	xx				
Diabetes	X	XX	x				
Endothelial function	X	x	xx				
Reproduction							
Premature birth	X	x					
Birth weight	XX	x					
IUR/SGA	X	x					
Fetal growth							
Birth defects	X						
Infant mortality	XX	x					
Sperm quality	X	x					
Neurotoxic effects							
Central nervous system		x	xx				

Table 1. PM and health outcomes (modified from *Ruckerl et al.* (2006)).

Thursday, October 24, 13

Hourly Observations from 52 Countries from 1996-present at a total of 6931 PM_{2.5} Measuring Sites

PM2.5 - AOD Relationship

Non-linear, function of wind speed, T, P, humidity, surface type, etc and prone to large biases in MODIS AOD algorithm due to surface reflectivity.

Literature studies have major issue in Western US (typical correlation coefficient 0.2) better in Eastern US (typical correlation coefficient 0.6)

Terra DeepBlue

Rank	Source	Variable	Туре
1		Population Density	Input
2	Satellite Product	Tropospheric NO ₂ Column	Input
3	Meteorological Analyses	Surface Specific Humidity	Input
4	Satellite Product	Solar Azimuth	Input
5	Meteorological Analyses	Surface Wind Speed	Input
6	Satellite Product	White-sky Albedo at 2,130 nm	Input
7	Satellite Product	White-sky Albedo at 555 nm	Input
8	Meteorological Analyses	Surface Air Temperature	Input
9	Meteorological Analyses	Surface Layer Height	Input
10	Meteorological Analyses	Surface Ventilation Velocity	Input
11	Meteorological Analyses	Total Precipitation	Input
12	Satellite Product	Solar Zenith	Input
13	Meteorological Analyses	Air Density at Surface	Input
14	Satellite Product	Cloud Mask Qa	Input
15	Satellite Product	Deep Blue Aerosol Optical Depth 470 nm	Input
16	Satellite Product	Sensor Zenith	Input
17	Satellite Product	White-sky Albedo at 858 nm	Input
18	Meteorological Analyses	Surface Velocity Scale	Input
19	Satellite Product	White-sky Albedo at 470 nm	Input
20	Satellite Product	Deep Blue Angstrom Exponent Land	Input
21	Satellite Product	White-sky Albedo at 1,240 nm	Input
22	Satellite Product	Scattering Angle	Input
23	Satellite Product	Sensor Azimuth	Input
24	Satellite Product	Deep Blue Surface Reflectance 412 nm	Input
25	Satellite Product	White-sky Albedo at 1,640 nm	Input
26	Satellite Product	Deep Blue Aerosol Optical Depth 660 nm	Input
27	Satellite Product	White-sky Albedo at 648 nm	Input
28	Satellite Product	Deep Blue Surface Reflectance 660 nm	Input
29	Satellite Product	Cloud Fraction Land	Input
30	Satellite Product	Deep Blue Surface Reflectance 470 nm	Input
31	Satellite Product	Deep Blue Aerosol Optical Depth 550 nm	Input
32	Satellite Product	Deep Blue Aerosol Optical Depth 412 nm	Input
			-

 $PM_{2.5}$

Target

In-situ Observation

Aqua DeepBlue

Rank	Source	Variable	Туре
1	Satellite Product	Tropospheric NO ₂ Column	Input
2	Satellite Product	Solar Azimuth	Input
3	Meteorological Analyses	Air Density at Surface	Input
4	Satellite Product	Sensor Zenith	Input
5	Satellite Product	White-sky Albedo at 470 nm	Input
6		Population Density	Input
7	Satellite Product	Deep Blue Surface Reflectance 470 nm	Input
8	Meteorological Analyses	Surface Air Temperature	Input
9	Meteorological Analyses	Surface Ventilation Velocity	Input
10	Meteorological Analyses	Surface Wind Speed	Input
11	Satellite Product	White-sky Albedo at 858 nm	Input
12	Satellite Product	White-sky Albedo at 2,130 nm	Input
13	Satellite Product	Solar Zenith	Input
14	Meteorological Analyses	Surface Layer Height	Input
15	Satellite Product	White-sky Albedo at 1,240 nm	Input
16	Satellite Product	Deep Blue Surface Reflectance 660 nm	Input
17	Satellite Product	Deep Blue Surface Reflectance 412 nm	Input
18	Satellite Product	White-sky Albedo at 1,640 nm	Input
19	Satellite Product	Sensor Azimuth	Input
20	Satellite Product	Scattering Angle	Input
21	Meteorological Analyses	Surface Velocity Scale	Input
22	Satellite Product	Cloud Mask Qa	Input
23	Satellite Product	White-sky Albedo at 555 nm	Input
24	Satellite Product	Deep Blue Aerosol Optical Depth 550 nm	Input
25	Satellite Product	Deep Blue Aerosol Optical Depth 660 nm	Input
26	Satellite Product	Deep Blue Aerosol Optical Depth 412 nm	Input
27	Meteorological Analyses	Total Precipitation	Input
28	Satellite Product	White-sky Albedo at 648 nm	Input
29	Satellite Product	Deep Blue Aerosol Optical Depth 470 nm	Input
30	Satellite Product	Deep Blue Angstrom Exponent Land	Input
31	Meteorological Analyses	Surface Specific Humidity	Input
32	Satellite Product	Cloud Fraction Land	Input

 $PM_{2.5}$

Target

In-situ Observation

Training dataset statistics and global 2000-2012 correlation coefficients.

	n	R	R ²
Aqua Deep Blue	8,233	0.99	0.98
Aqua Standard	30,298	0.99	0.98
Terra Deep Blue	4,011	0.99	0.98
Terra Standard	19,718	0.98	0.97

Machine Learning Estimate of PM_{2.5}

Combine a total of about 30 variables

- In-situ observations
- Population Density
- Meteorological Variables
- Satellite Variables

Globally, every day from March 1, 2000-present

Big Picture

The relationships between Asthma admissions and environmental variables are clearly:

- Non-Gaussian
- Multi-variate
- Non-linear
- There is a different relationship to environmental variables for ER, In-Patient, and Out-Patient admissions

Non Gaussian Distributions

Thursday, October 24, 13

Mutual Information

The mutual information of two variables is a quantity that measures the mutual dependence of the two variables.

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Intuitively, mutual information measures the information that X and Y share: it measures how much knowing one of these variables reduces uncertainty about the other.

Multi-Variate

90

-0.8

Thursday, October 24, 13

0.8 0.7

NN NDVI 01/2003

-0.2 NDVI

Aqua ag412

A Haboob (Arabic: هُبوب "strong wind", or "blowing furiously.")

NRL High-resolution Dust Source Database

Approach and Methodology

- 10 years of DEP (2 yr MSG/RGB) imagery
- COAMPS 10 m wind overlays
- Surface weather plots
- ENVI (Gis-like software)
- NGDC topographical 10°X10° tiles
- Overlay 0.25° grid or use Google Earth (GE)

- **Dust source area entered into database** (cursor location tool = 1km precision)
- Cross-correlate land and water features using maps, atlases, Landsat images (detailed topographic, geographic, and geomorphic information, **GE**)
- Technical and governmental reports

NRL High-resolution Dust Source Database

Solid red and purple shapes identify dust source areas located using DEP and MSG.

SW Asia DSD

East Asia DSD

Self-Organizing Map

SOMs reduce dimensionality by producing a map that objectively plots the similarities of the data by grouping similar data items together.

SOMs learn to classify input vectors according to how they are grouped in the input space.

SOMs learn both the distribution and topology of the input vectors they are trained on. This approach allows SOMs to accomplish two things, reduce dimensions and display similarities.

Detecting Dust Sources

Self Organizing Map Classification

7 Bands MODIS MCD43C3 bihemispherical reflectance

Thursday, October 24, 13

Sudan Dust Event: April 18, 2010 (6Z – 8Z)

Sudan Dust Event: April 18, 2010 (6Z – 8Z)

Plumes originate from southern Sahel

Corresponding SOM-Classes: 175, 177, 648

Chad: Ennedi Plateau Dust Event: April 9, 2010

Plumes originate from southern Sahel

Corresponding SOM-Classes: 175, 177, 648

Chad: Bodélé Depression Dust Event: March 16, 2010 (7Z -12Z)

Located at the southern edge of the Sahara Desert in north central Africa, is the lowest point in Chad. Dust storms from the Bodélé Depression occur on average about 100 days per year. The Bodélé depression is a single spot in the Sahara that provides most of the mineral dust to the Amazon forest.

Chad: Bodélé Depression

1000 SOM Classes

Selected SOM Classes

Source area is not designated in first pass of MODIS reflectance and land surface classification.

NRL MSG-RGB 20110109

Chad: Bodélé Depression

1000 SOM Classes

Selected Classes with Class 137

Class 137 maps diatom sediment in depression.

NRL MSG-RGB 20110109

Chad: Bodélé Depression

1000 SOM Classes

Selected Classes Without Class 137

Class 137 maps diatom sediment in depression.

NRL MSG-RGB 20110109

West Africa: Feb 2, 2011 13Z

Dust plumes regional location

Northern (Sahara: Algeria, Mali)

Tidikelt

Highlands west of Hoggar mountains

Edges of Taoudeni basin

Southern (Sahel: Mauritania, Senegal)

Between Tangant plateau and Bambouk mountains

West Africa: Feb 2, 2011 13Z

Solid black circles/ovals show plume source

Corresponding SOM Classes within open circles/ovals

Northern Sahara: 36, 40, 63, 100 Sahel: 147, 229, 230, 405

All 1000-Classes mapped for North America

Sources along New Mexico/Texas border

Agricultural on high planes Blue dessert areas

The North American sources have a different spectral signature than those we saw in SW Asia

Thursday, October 24, 13

Sources along New Mexico/Texas border

Plume Head Locations

East of Clovis, NM
NW of Floyd, NM
SW of Lingo, NM
West of Hobbs, NM

Corresponding SOM-Classes

551, 552, 608

N/S High Plains

Sources in Arizona and Colorado

Sources in Arizona and Colorado

Plume Head Locations

35.85 N, 111.34 W	Painted Desert, AZ
35.75 N, 111.15 W	Painted Desert, AZ
37.85 N, 106.22 W	N of La Garita, CO
37.60 N, 106.20 W	S of Torres, CO

Corresponding SOM-Classes

218, 228, 229, 249 258, 260	Painted Desert, AZ
513, 521, 525, 526	San Luis Valley, CO

Selected Classes for North America (n=64)

Selected Classes for North America (n=64)

All 1000-Classes mapped for South America

All 1000-Classes mapped for South America

Blue colored SOM-Classes are concentrated in Atacama and Salar de Uyuni deserts

All 1000-Classes mapped for South America

Blue colored SOM-Classes are concentrated in Atacama and Salar de Uyuni deserts

July 21, 2009 MODIS Terra True Color

July 18, 2010 MODIS Terra True Color

Selected SOM-Classes in 200s, 300s, and 400s

Selected SOM-Classes in 200s, 300s, and 400s

FORECASTING AIRBORNE MOLD

Exposure to mold spore aeroallergens can trigger numerous allergic reactions ranging from mild to severe. Persons vulnerable to mold spore exposure can benefit from timely warnings of increased spore levels, and health care professionals can use this information to develop strategies to prevent some adverse outcomes. Currently, estimates of mold spore levels are based on data acquired from a limited number of ground-monitoring stations that are unavailable in ny parts of the country. This method of data ction and processing is also quite expensive.

Watery eyes

Runny nose

Itchy throat

HELPING WOUNDED WARRIORS

Traumatic brain injury (TBI) is a serious public health problem in the United States. Each year, traumatic brain injuries contribute to a substantial number of deaths and cases of permanent disability. Every year, at least 1.7 million TBIs occur either as an isolated injury or along with other injuries.

LIFE EXPECTANCEY

EFFECTIVE PUBLIC HEALTH POLICY

A new age is dawning with actionable insights being provided by a combination of holistic datasets comprehensively describing issues, coupled with unprecedented computing power and machine learning. For the first time in man's history we have the chance to comprehensively characterize problems and objectively focus on the key issues.

WATER CRISIS THREATENS US FOOD SECURITY

The global water crisis – caused by drought, flood, and climate change – is about recognizing water's true value, using it efficiently, and planning for a different future.

http://holistics3.com David.Lary@utdallas.edu