Pulmonary Pathogenicity of Ambient Particulate Dust from Iraqi Military Fields

David A. Jackson

The US Army Center for Environmental Health Research
US Army Medical Research and Materiel Command
Fort Detrick, MD

28 August 2013
Disclaimers and Support

The views, opinions, and/or findings expressed are those of the author and do not reflect the official policy or position of the Department of the Army, the Department of Defense, Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health, or the United States Government.

Research was conducted in compliance with the Animal Welfare Act and other Federal statutes and regulations relating to animals and experiments involving animals and adheres to principles stated in the Guide for the Care and Use of Laboratory Animals (NRC 2011) in facilities that are fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

The research described herein was sponsored by the U.S. Army Medical Research and Materiel Command Military Operational Medicine Research Program, Global War on Terror funds, and the Defense Medical Research Program.
Background

Animal studies of toxicity of particulate matter from Southwest Asia

“Sand and Smoke” Inhalational Study

Intratracheal Instillation Studies
 Kuwait, Camp Buehring
 Iraq, Camp Victory

Wrap-up
In Southwest Asia (SWA), dust/sand storms are a persistent problem. 300 µg/m³ Total Suspended Particulates is the mean for Operation Iraqi Freedom locations (Iraq, Kuwait, Qatar).

EPA hazardous cut point is 425 µg/m³ TSP (24 hour value).

Aerosol particulate matter was sampled at 15 sites throughout SWA.

All sites exceeded the 1-year Military Exposure Guideline of 15 µg/m³ for $PM_{2.5}$.

(Engelbrecht et al. 2009, Inhalation Toxicology)

Reports of increases in respiratory disease and symptoms related to deployment

Case cluster of Soldiers with acute eosinophilic pneumonia.

(Shorr et al. 2005 Mil Med)

Cluster of Soldiers with constrictive bronchiolitis.

(King et al., 2011 N Eng J Med)

Epidemiological analysis shows

Increased prevalence of upper respiratory complaints in theater.
Increased reporting of respiratory symptoms following deployment.

(See special edition of J Occup Env Medicine, June 2012)
In 2005 Office of the Asst. Secretary of Defense for Health Affairs chartered a working group to assess state of knowledge of health effects of exposure to particulate matter in SWA.

Several *ad hoc* working groups have considered the same question since 2005 (Military Operational Medicine, National Jewish Health, VA/DoD Airborne Hazards Symposia). Relevant reports issued by National Research Council (review of EPMS) and Institute of Medicine (burn pits).

All of this has led to

Ongoing clinical research on possible respiratory health effects of deployment to SWA at Brooke Army Medical Center.

Epidemiological studies through Millennium Cohort Study and US Army Public Health Command.

Animal studies of toxicity of SWA dusts
Project lead by NAMRU-Dayton (Naval Medical Research Unit)

Inspired by increased frequency of acute eosinophilic pneumonia reported early in Operation Iraqi Freedom.

May be associated with new-onset smoking.

Rats exposed to cigarette smoke and surface sand from Camp Victory (CV) or pure silica fractionated to respirable diameter.

Nose Only Exposure

Air/Smoke [0.48 mg WTPM/L]

3 h/day, 5 d/week

Whole Body Exposure

Sand [1 mg/m³]

19 h/day, 7 d/week

(Dorman et al., 2012 Inhalation Toxicology)
Histology:
Mild air passage irritation from CV sand exposure but < silica.
Much stronger effect from smoke.
Some modest interactions between cigarette smoke and sands.

No statistically significant differences in pulmonary function due to silica/sand exposure.

Changes in gene/protein expression related to CV Sand exposure seem to be stress and/or inflammation –related

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Air-Air</th>
<th>Smoke-Air</th>
<th>Smoke-CV Sand</th>
<th>Smoke-Silica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>421.6 ± 9.4</td>
<td>353.3 ± 5.6*</td>
<td>356.9 ± 12.3*</td>
<td>361.5 ± 11.7*</td>
</tr>
<tr>
<td>Baseline respiratory rate</td>
<td>154 ± 12</td>
<td>108 ± 9*</td>
<td>145 ± 16</td>
<td>144 ± 12</td>
</tr>
<tr>
<td>Tidal volume (ml) with MCh</td>
<td>2.01 ± 0.15</td>
<td>1.56 ± 0.07*</td>
<td>1.52 ± 0.08*</td>
<td>1.54 ± 0.10*</td>
</tr>
<tr>
<td>Baseline Penh</td>
<td>0.63 ± 0.04</td>
<td>1.16 ± 0.16*</td>
<td>1.23 ± 0.11*</td>
<td>1.10 ± 0.20</td>
</tr>
<tr>
<td>Penh with MCh</td>
<td>7.27 ± 1.03</td>
<td>3.75 ± 0.83*</td>
<td>2.15 ± 0.31*</td>
<td>3.11 ± 0.42*</td>
</tr>
</tbody>
</table>

(Dorman et al., 2012 Inhalation Toxicology)
NAMRU-Dayton

Toxicity of settled, size-fractionated dust collected at Camp Buehring (N Kuwait)

Rats exposed with a single intratracheal instillation to 1, 5, 10 mg ≤10 µm dust; animals sacrificed 3, 7, 180 days post exposure

Histopathology, cytokines, markers of lung injury

TiO$_2$ and silica controls

(Wilfong 2011, J Toxicol Env Health A)
Obvious inflammation in dust-exposed animals at short times—similar to TiO₂

Evidence of fibrosis and continuing inflammation in silica controls at 6 mo

However, at 6 months little evidence of disease in dust-exposed animals

(Wilfong 2011, J Toxicol Env Health A)
Two rat intratracheal instillation studies

1. IR8: Camp Victory aerosol PM$_{10}$ collected in 2008
 silica control
 3 doses (2.5, 5.0, 10.0 mg/kg)
 3, 7, 30, 60, 120, 150 days

2. PM$_{10}$ from
 IR9 aerosol dust collected at Camp Victory in 2009
 P15 Camp Buehring Dust
 IR8 aerosol dust collected at Camp Victory in 2008
 USUPM US urban dust (NIST)
 Si silica control
 3 doses (where possible)
 60, 120, 150 days
Characterization of dusts
Camp Victory, Iraq

Particle Sizes

Silica NIOSH 7500 (wt %)

<table>
<thead>
<tr>
<th></th>
<th>IR8</th>
<th>IR9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristabolite</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Tridymite</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Silica</td>
<td>3.5</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Elemental Composition (mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>IR8</th>
<th>IR9</th>
<th>P15</th>
<th>USUPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>99</td>
<td>120</td>
<td>660000</td>
<td>610</td>
</tr>
<tr>
<td>Ca</td>
<td>118000</td>
<td>110000</td>
<td>150000</td>
<td>58400</td>
</tr>
<tr>
<td>Fe</td>
<td>27700</td>
<td>26000</td>
<td>9900</td>
<td>39200</td>
</tr>
<tr>
<td>Al</td>
<td>19500</td>
<td>19000</td>
<td>6600</td>
<td>34300</td>
</tr>
<tr>
<td>Mg</td>
<td>23600</td>
<td>24000</td>
<td>19000</td>
<td>8100</td>
</tr>
<tr>
<td>K</td>
<td>5290</td>
<td>5900</td>
<td>1600</td>
<td>10600</td>
</tr>
<tr>
<td>Pb</td>
<td>52</td>
<td>74</td>
<td>42</td>
<td>6600</td>
</tr>
</tbody>
</table>
Protein in lung lavage fluid

2008 Camp Victory (IR8)
2009 Camp Victory (IR9)
US Urban Dust (USUPM/NIST)
Camp Buehring Dust (P15)
PBS

All treatments result in some lung damage at early times; however, only silica produces a large persistent effect.
Histology—Semi-quantitative scoring

Si Dust

IR8 Dust

Days after instillation

Score

Score

Days after instillation

Low Medium High PBS

IR9 USUPM Si P15 IR8 PBS
Alveolar epithelial hyperplasia
Pre-neoplastic changes

Score

Si Dust

IR8 Dust

Days after instillation

Score

Days after instillation

IR9
USUPM
IR8
PBS
Small airways changes & emphysema

Days after instillation

Score

Small Airway Changes

Score

Emphysema

Days after instillation

Iraq 2009
USUPM
Si
P15
Iraq 2008
PBS

Iraq 2009
USUPM
Si
P15
Iraq 2008
PBS

Low Medium High PBS
Intratracheal instillation
Camp Victory, Iraq

Silica: significant and persistent increases in inflammatory indicators
IR dusts: intense early inflammatory responses that fade but might lead to asthma or hypersensitivity pneumonitis on repeated exposure.

Silica: persistent increases in bronchiolar and alveolar hyperplasia.
IR dusts: early evidence of bronchiolar and alveolar hyperplasia which diminish.

All particles: inflammation, fibrotic, and destructive changes in the small airways, but they are most severe in the silica exposed animals.

IR dusts: mild emphysema at sites of dust deposition.
USUPM: more pronounced emphysematous changes than IR dusts.

No evidence of constrictive bronchiolitis in the medium-sized airways although some peribronchiolar inflammation and fibrosis was evident at high doses.

IR dusts are not intensely toxic but might cause asthma, hypersensitivity pneumonitis, and/or emphysematous changes with repeated exposures.
Caveats:
PM from only two sites has been tested extensively.
Airborne materials were tested only in installation experiments.
Data suggest that the toxicity of PM from different locations may differ.
Long term effects of continuous or repeated exposures have not been tested.

Future work:
Testing of aerosol PM from different sites.
Testing repeated exposures.
Long term effects of inhalational exposures.
Participants

NAMRU-Dayton
- LT Dean Wagner
- LT Vishwesh Mokashi
- CDR Michael Stockelman
- CDR Gail Chapman

NIOSH
- Val Vallyathan
- Steve Leonard
- Vince Castranova
- Natalie Fix

North Carolina State University
- Dave Dorman Lab

USACEHR
- John Lewis
- Christine Baer
- Bill Dennis
- Karen Porter

USAPHC
- Jim Sheehy
- Paul Hopp
- Joe Sutphin
- LTC Ron Ross