Observation of atmospheric composition from space

Nan Hao

Hamtetc/EUMETSAT

A Content/Second and allots an Olda Master(in conduct shis firster, Second DRM reference, constant analysis and data

Outline

- ✓ Why observe atmosphere from space?
- ✓ Introduction of satellite observations
 - → Satellite orbits
 - ✓ Different observation options
- → Satellite instruments
 - → History, Current and Future
- ✓ Algorithms and examples

Why observe atmosphere from Space ?

- \checkmark Not all measurement locations are accessible
- Provide long time series trend analysis results and extended measurement areas
- → Environmental/Climate Change requires Global Observations
- Automatic measurements and several parameters can be measured at the same time
- On a per measurement basis, satellite measurements usually are less expensive than in-situ measurements

Satellite Orbits

Low Earth Orbit (LEO)

- orbits cross close to the pole
- Daily revisit time global coverage
- Climate, air quality, ozone & UV
- Tropospheric & stratospheric composition

Satellite Orbits

Low Earth Orbit (LEO)

- orbits cross close to the pole
- Daily revisit time global coverage
- Climate, air quality, ozone & UV
- Tropospheric & stratospheric composition

GEOstationary (GEO)

- satellite has fixed position relative to the Earth
- parallel measurements in a limited area from low to middle latitudes
- Mainly air qualityDiurnal cycle of tropospheric composition

Comparison of different observation options

-	Nadir:	-	Limb:
•	view to the surface	•	good vertical resolution,
•	good spatial resolution	•	but only in the UT/LS region
•	little vertical resolution	•	large cloud probability
_	UV/vis/NIR:	_	IR:
•	sensitivity down to surface	•	large number of potential species
•	daytime only	•	day and night measurements
•	no intrinsic vertical resolution in	•	some vertical resolution in nadir
	nadir	•	weighted towards middle
•	aerosols introduce uncertainties		troposphere
	in light path	•	problems with strong absorbers

 problems with dark (solar IR) or cold (thermal IR) surfaces

History of LEO in Europe

- 1995 Launch of GOME on ESA ERS-2 20th April
 Global 07 1995 06 2003 Regional 07 2003 07 2011
 Spatial resolution: 320 x 40 km²
 Global coverage: 3 days
 10:30 am crossing time
- 2002 Launch of SCIAMACHY on ENVISAT Global 08 2002 - 04 2012 Spatial resolution: (30) 60 x 30 km² Global coverage: 6 days 10:00 am crossing time

Current LEO

- 2004 Launch of OMI on Aura
 Global 10 2004 present
 Spatial resolution: up to 13 x 24 km²
- Global coverage: 1 day
 13:30 pm crossing time

E EUMETSAT

- 2006 Launch of Metop A with GOME-2 19th October
 Global 02 2007 present
- 2012 Launch of Metop B with GOME-2 September
 Global 09 2012 present
 Spatial resolution: 80 x 40 km²
 Global coverage: 1.5 days
 09:30 am crossing time

GOME-2A change to 40 x 40 km² since July 2013

Future LEO and GEO in Europe

Sentinel-5p (TROPOMI)

- UV-VIS-NIR-SWIR nadir view grating spectrometer.
- Spectral range: 270-500, 675-775, 2305-2385 nm
- Spectral Resolution: 0.25-1.1 nm
- Spatial Resolution: 7x7km2
- Global daily coverage at 13:30 local solar time.

Sentinel-5

- Nadir-viewing push-broom UVNS spectrometer, 2 telescopes
- spectral ranges between 270 and 2385 nm
- spectral resolution 0.25 1.0 nm, oversampling factor 2.5 3
- daily coverage at latitudes > 12 deg
- spatial resolution 7.5 km @ nadir (45 km at λ < 300 nm)
- high signal/noise

Sentinel-4

Revisit time	1h
Geographic coverage	Europe + part of Atlantic + part of Sahara, FoV = 4° N/S, 11° - 14° E/W
Spatial resolution	8.9 km N/S, 11.7 km E/W at 45°N
Spectral range	UV-VIS: 305-500 nm, NIR: 750-775 nm
Spectral resolution	UV-VIS ≤ 0.5 nm, NIR ≤ 0.12 nm

On the Mission and all all an Olde Manted to conduct this factor, had one DM advances counter acceleration and data

Future LEO and GEO

	L.T.	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
OMI	13.45h																										
GOME-2 - Metop B	09.30h																										
GOME-2 - Metop C	09.30h																										
Sentinel-5p	13.30h																										
Sentinel-4 - 1																											
Sentinel-4 - 2																											
Sentinel-5 - 1	09.30h																										
Sentinel-5 - 2	09.30h																										
Sentinel-5 - 3	09.30h																										

• GEO dedicated air quality missions: GEMS, Sentinel-4, TEMPO, ...

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Sentinel-5p														
GEMS														
TEMPO						•	•	•						
Sentinel-4														
Sentinel-5														

44 On the Manufernance and allals are Olida Manuferful conducts this factor. Include DM information consists more based data

GOME-2 trace gas column products

GOME-2 trace column algorithm

- → GOME Data Processor (GDP) Version 4.8
 - → Trace gas column retrieval using DOAS/AMF method
- → Retrieval of slant column density (SCD) with DOAS algorithm:
 - \neg O₃, SO₂, BrO and H₂CO in UV-wavelength region (315-360 nm)
 - \rightarrow NO₂ in VIS wavelength region (405 465 nm)
 - \rightarrow H₂O in NIR wavelength region (614 683 nm)
- ➤ AMF and vertical column calculation
 - → AMF calculation with LIDORT radiative transfer model
 - Depends on forward model parameters: viewing geometry, surface albedo, trace gas profile, clouds, aerosols

Total ozone column algorithm

- → Iterative two-step DOAS / AMF approach
 - → DOAS fitting window: 325-335 nm
 - → Brion/Dumont ozone cross-sections (2 Temp.)
 - → molecular Ring correction
 - \neg on-the-fly iterative AMF scheme using LIDORT V3.x
- → Implemented algorithm improvements:
 - → empirical correction for scan-angle dependence in total ozone (updated)
 - → sun-glint correction
- → GDP v4 Cloud pre-processing
 - → Cloud algorithms: OCRA & ROCINN

Hao et al., AMT, 2014

Antarctic ozone hole in 2015 as measured by GOME-2

GOME-2/MetOp-A+B Total O₃

100.0

150.0

200.0

250.0

02.10.2015

300.0

350.0

400.0

450.0

500.0

- The 2015 Antarctic ozone hole area was larger and formed later than in recent years
- On 2 Oct. 2015 GOME-2A&2B measured a minimum total ozone column of ~120 DU
- The ozone hole expanded to max.
 28.2 million km²

ELIMETSA

Long time ozone data records from GOME and GOME-2

GOME-2 total ozone: assimilation in CAMS system

data this factor factors DM action

🗲 EUMETSAT

Tropical tropospheric ozone column

I · I Sondes **∓**∓ DLR

Convective-cloud-differential (CCD) method

- above cloud and clear-sky ozone column measurements
- Tropical tropospheric ozone columns (TTOC) below 200 hPa GOME-2 data required:
- Total ozone columns
- effective cloud fraction (OCRA), cloud pressure and albedo 7 (ROCINN)

Olida Maatavi ta

Valks et al., AMT, 2014

ELIMETCAT

Tropospheric NO₂ column retrieval

- \neg Retrieval of trop. NO₂ column requires three algorithm steps
 - Retrieval of total NO₂ slant column using DOAS method (405 465 nm) 7
 - Stratosphere-Troposphere Separation (STS) algorithm 7
 - \checkmark Tropospheric AMF and NO₂ column calculation
 - \checkmark NO₂ profile shape information from global CTM

Air pollution event over Europe in March and April 2014

00 On the Manufacture and allals an Olida Manufacture shall be factore labeled DM inference sensitive result as and date

EUMETSAT

Tropospheric NO₂ trends over East China

GOME-2 Tropospheric NO₂

2007-2015

Tropospheric NO₂ trends over East China

GOME-2 Tropospheric NO₂

2007-2015

GOME-2 tropospheric NO₂ over Europe 2007-2013

SO2 Column Algorithm for GOME-2/S5P

- 3-steps DOAS algorithm Spectral fitting in multiple windows to avoid saturation 312-326 nm (pollution, volcanic degassing) 325-335 nm (moderate eruptions) 360-390 nm (extreme eruptions)
- Background Corrections
- Computation of VCD with using modeled (anthropogenic SO2) and predefined profiles (volcanic SO2)

Eyjafjallajökull eruption, April – May 2010

GOME-2/METOP-A Sulfur Dioxide 05-MAY-2010

-Over **95,000** flights had been cancelled all across Europe during the six-day travel ban

The total loss for the airline industry was around €1.3 billion
 SO₂ information is valuable for aviation safety and for early warning of volcanic activity

GOME-2 - Kasatochi Eruption (8-31 August 2008)

-First satellite detection of volcanic BrO emission

Formaldehyde column algorithm

- ✓ New DOAS slant column fitting algorithm
 - Z inter-linked fitting intervals:

 332-359 nm for BrO, 328.5-346 nm for H₂CO
 - → Reduced spectral interference between BrO and H₂CO
 - \checkmark Significantly reduced noise in retrieved H₂CO columns
- → Reference Sector correction
 - → Latitude dependent reference sector: Pacific Ocean (160°-240°E)

→ AMF determination

- \neg LUT of scattering weights calculated with LIDORT V3.x.
- → A-priori profile shape from IMAGESv2 model (Muller and Stavrakou, 2005)
- → Correction for clouds (IPA)
- → Averaging Kernel information

De Smedt et al., AMT, 2012

High H₂CO regions related the release of hydrocarbons from forests, biomass burning, traffic and industrial emissions.

GOME-2 Water vapour column

Classical DOAS algorithm (Uni Heidelberg/MPI Mainz; Wagner et al. 2003)

- → DOAS slant column algorithm
 - \neg Fitting window 614-683 nm (below vegetation peak, "weak" O₂, H₂O)
 - \neg Includes O₂, O₂ -O₂, 3 vegetation types, Ring, straylight offset
- → Saturation correction
- \rightarrow AMF computation based on "measured" AMF of O₂
 - \neg VCD of O₂ is known, AMF_{meas}(O₂) = SCD_{meas}(O₂) / VCD_{known}(O₂)
 - \neg VCD(H₂O) = SCD_{meas}(H₂O) / AMF_{meas}(O₂) x correction_factor
- → Empirical correction for scan angle dependency

Grossi et al., AMT, 2014

GOME-2 Water vapour

00 - On the Minister and allah an Olda Mantasi to sinder this factor. Include DM information standard and data

Application of satellite measurements

-Environmental Themes

	-Missions and	I Services						
-regional AQ at 1h temporal res.	-global AQ at 1d temporal res.	climate	-ozone total column					
emission and abundance	emission and abundance	GHG emissionmonitoring	 long term total O₃ 					
monitoring	monitoring	• aerosol	evolution					
forecast	forecast		• surface UV (health)					
- GEO (Sentinel-4,	LEO (GOME-2, OMI,	Sentinel-5p, Sentine	el-5)					
TEMPO, GEMS)	-Sentinel-5P	Se	ntinel-5					
 diurnal variation, e.g. NO₂, 	bridging between OMI and S-5	 continuity and long- 	-term datasets					
aerosol	• CO and CH_4	• CH ₄ from 2 bands						
 part of CEOS virtual 	• x6 step in 2-D spatial resolution vs. OMI							
constellation	monitoring) some diurnal information (with GOME-2) 							

Application of satellite measurements-NO2

Trend studies

Forecasting

NOx chemistry

0 On the Minute means and allals an Olida Mantasi to subdate this faster, hads do DM seference subsciences and date

What is problematic about satellite measurements?

- → Always indirect measurements
- Usually, additional assumptions and models are needed for the interpretation of the measurements
- → Spatial resolution and temporal resolution too large
- ✓ Validation of remote sensing measurements is a major task
 - Comparison of satellite retrievals with other measurements are only meaningful if the averaging kernels are accounted for
- → estimation of the errors often is difficult

Summary and Conclusions

- Satellite observations of tropospheric composition in the UV/vis, NIR and thermal IR provide consistent global datasets for many species including major air pollutants such as O3, CO, NO2, and HCHO
- The measurements are averaged horizontally and vertically which makes them difficult to compare to point measurements
- Remote sensing in an indirect method that necessitates use of a priori information in the data retrieval which has an impact on the results
- In spite of the relative large uncertainties involved in satellite remote sensing , they provide a unique source of information on the composition of the troposphere