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Al =

Can machines think? - Alan Turing, 1950

= Replication/simulation of
human intelligence in machines

= “Ability to
learn and perform suitable techniques
to solve problems and achieve goals
appropriate to the context
in an uncertain, ever-varying world”
—Manning, 2020

https://www.javatpoint.com/application-of-ai
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Why do we need digital scene models? €

From (visual) navigation (e.g. Google Maps/Earth) ...

SURVEYING
MAP
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Why do we need digital scene models? €

... to scene understanding ...
= Based onscene geometry

= Based on spatial layout or arrangement of objects

=

- HEAVY RAIN
- FLOOD ZONE J 4 /

- IMPROPER
DRAINAGE

- WET GROUND

e P ) s Vakd 3 : S \
https://www.yo ‘ ‘_ﬁ,e.coﬁlﬁNatcﬁ?v:_iFnrrzn‘S'NDk '

gt | | https://www.youtube.com/watch?v=PvluocemHS4
autonomous driving flood simulation
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Why do we need digital scene models? €

... and scene me

*  Modificati Challenges:
- Accurate reconstruction/modeling/visualization

- Efficient scene representations
- Scene interpretation

(geometry, materials, illumination, \
_semantics, physics, etc.)

/

Where to place the object (ground inference)?
https://www.thedubrovniktimes.com/news/dubrovnik/item/1765-amazing-video-from-dubrovnik- . . . .
to-king-s-landing?fb_comment_id=1072838662825020_1123759387732947 HOW dOGS Ilghtlng Inﬂuence ObJECt appearance?
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Why do we need digital scene models? €

"Holodeck” experience

= Telepresence: ,Subjective experience of being in an environment that may differ
from the user’s actual local physical surrounding”
o ” H
. . . . Holodeck” experience
= |deally multi-modal immersive experience
= Beyond standard displays
_ _‘ _ —
i
-
https://www.youtube.com/watch?v=kzNVkc4gB6U
Images partially taken from presentermedia.com —

(& 4
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Why do we need digital scene models? &

http://news.mit.edu/20%gmit-csail-new-sy
-teleoperating-robots-virtual-reality-1009

https://visualise.comf2017/11feducation-vr-5-examples
-bending-reality-enhance-learning

| Education

guardian.com
-phobias*publi

Exploring

httos://.x"sx“,feek.com/zol Jo8/vrs-focus-vr-ar- (captured) real'
o world Therapy
environments

A
Y

——— https://medium.com/frulix/virtual-

) https://scooterise.com/modern-way ~[eality-emerging-backbone-of-
Holoportation [Orts-Escolano et al. 2016] ‘ -exploring-ancient-monuments/ tourism-industry-7b60002526¢0

https://medium.com/arjs/why-web-apps-afe-the-future-of—augmented-reality-c503e796aoc5
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How to (digitally) represent scenes? sV

mesent

and capture 3D scenes?
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What do we see? «
NN\

@)
g
’s g
pixel color represents the result / ””:’;,:
from the light interaction with the environment ”’:’:’l’
>N 1z
- |/
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What do we see? =

Color snapshot

= Intensity of light
= Seenfrom asingle view point
= Atasingletime
= Asafunction of wavelength
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Figure by Leonard MeMillan Slide credit: A. Efros
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What do we see? =

The plenoptic function

= Reconstruction of scene appearance under every possible view, at every moment,
from every position, at every wavelength

—> It completely captures our visual reality!

"‘«ﬁ\‘-
R R PRI e

Figure by Leonard McMillan Slide credit: A. Efros
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Model geometry or just capture images? €Y

Geometry-image continuum ...

Physically- Appearance-
based based
Single Fixed View- View- Sprites Lavered Lumigraph Lighi-
geometry, geometry. dependent dependent  with depth field
sigle View- geometry, geometry,  depth 1mages rendering
fexture dependent  single view-
texture texture dependent
texmure
I I |
Conventional graphics pipeline Warping  Interpolation

Y
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Model geometry or just capture images? €Y

Reduce complexity?

= Assumption:
known surfaces

- (traditional)
computer graphics

Slide by Rick Szeliski and Michael Cohen
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Traditional approach: Geometry + Reflectance Gﬁ:")

Background: 2D image synthesis (via rendering)

= Underlying principle: ray tracing (standard technique in graphics)
= |dea:

= Measure light that arrives in
the camera image

= ,Shooting" rays from a viewpoint
through an image grid into the
3D scene

= Intersection with geometric
structures
(e.g., ray-triangle intersection for meshes)

= (Colorassignment (per pixel) based on
evaluation of reflectance model

Image credits: C. Dachsbacher
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=3
How should we represent complex 3D scenes? €Y

mw can we get

information about
“/ﬁometry/ reflectance?
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Conventional 3D Scanning

Separate 3D scanning with classical techniques:
= Structured light systems (active)
= | aserscanners (active)
= Multi-view stereo (passive)

[

Distorted Patterns
on Surface

\
!

K

| ES
|
I A EA
I S
Il EED

.

LR

Projection of '

Light Patterns Camera

Projector Graycode  Projections
Patterns
M. Weinmann, C. Schwartz, R. Ruiters, and R. Klein. A Multi-Camera, Multi-Projector _ .
Super-Resolution Framework for Structured Light. 3DIMPVT, 2011 McCann, 3D Reconstruction from Multiple Images

5
TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios




Conventional 3D Scanning

Example:

= SfM + MVS
(offline reconstruction)

%\&Jc‘t’uled Imag~es -
PR i
Eﬁs—&ﬁ[‘!ﬁ% Scene Graph it 5

.,

Data association I

Frahm et al. (2016): Larg€ ) W@¥tling from Crowdsourced Data
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Conventional 3D Scanning sV

Example:

=  Visual SLAM
(online/real-time reconstruction)

;",_ ‘N\y'

-,

VR-based telepresence/teleoperation [TVCG ”19 ‘ﬁ‘“ AR19 3DV’19, CVPRW’19, IROS’19, ICCVW’23]
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Example:

=  Visual SLAM
(online/real-time reconstruction)

VR-based telepresence/teleoperation [TVCG’'19, ISMAR’19, 3DV’19, CVPRW’19, IROS’'19, ICCVW’23]
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M. Levoy, The Digital Michelangelo Project
and the Forma Urbis Romae Project

~CBSTHIS | TERRIFYING TAKEOFF

MORNING AMERICAN AIRLINES PLANE HITS RUNWAY SIGN AND LIGHT POLE DURING TAKEOFF

https://www.youtube.com/ https://www.youtube.com/watch?v=XDuY9Qe4WPs https://www.youtube.com/watch?v=sQmIxPVtOGk
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Conventional 3D Scanning Techniques €Y

Challenges:

= Dynamicrange

OK BAD BAD oK

BAD OK BAD

y
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Conventional 3D Scanning Techniques €

Challenges:
= Dynamicrange
= Device resolution

W

y
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Conventional 3D Scanning Techniques €

Challenges:
= Dynamicrange
= Deviceresolution
» Optically complicated materials

y
TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios



Advanced 3D Scanning Techniques sV

Overcome challenges of classical techniques based on:
= HDR Scanning

M. Weinmann, R. Ruiters, A. Osep, C. Schwartz, and R. Klein, A Multi-Camera, Multi-Projector
Super-Resolution Framework for Structured Light, 3DIMPVT 2011
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Advanced 3D Scanning Techniques sV

. - O
Overcome challenges of classical techniques based on: ‘ .
= HDR Scanning

= Superresolution

projector 1

projector 2

T50px

M. Weinmann, R. Ruiters, A. Osep, C. Schwartz, and R. Klein, A Multi-Camera, Multi-Projector
Super-Resolution Framework for Structured Light, 3DIMPVT 2011
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Advanced 3D Scanning Techniques sV

Overcome challenges of classical techniques based on:
= HDR Scanning
= Superresolution
= Combination of different techniques to compensate for their individual limitations

4 S |

photograph laser scan super-resolution structured light + normals
(Weinmann et al. 2011) (Weinmann et al. 2012) BMVC 2012

Surrey, September 3rd - 7th

M. Weinmann, R. Ruiters, A. Osep, C. Schwartz, and R. Klein, Fusing Structured Light Consistency ‘,,_, ,
and Helmholtz Normals for 3D Reconstruction, BMVC 2012 >} ,,{;e;iéf‘.. § pLl

< ,
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Advanced 3D Scanning Techniques sV

Overcome challenges of classical techniques based on:
= HDR Scanning

= Superresolution
= Combination of different techniques to compensate for their individual limitations

= Techniques tailored to complicated objects/surfaces

observations = surface consistency

M. Weinmann, A. Osep, R. Ruiters and Reinhard Klein. Multi-View Normal Field Integration
for 3D Reconstruction of Mirroring Objects, ICCV 2013
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=3
How should we represent complex 3D scenes? €Y

@hat we have
geometry, how do we

\\ft reflectance?
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Why do we need reflectance? =

Important visual cue regarding ,,how do things feel"

Texture

TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios



How to model light exchange at the surface? =

Describe the material appearance decoupled from the environment,
lighting and observer characteristics

it A,
4 A,

Timesteps: t;, ¢, A
Directions of incoming/ : 1@ ,l“
. b : N

G0 &) o

Surface points: x, AT S
points: x;, X, P b e v £ L S
RO e P
Wavelengths: 4;, 4, :@#&...';I'l.ﬁ.". 7
e T A
. vy
general function (12D) ig,e:‘z{::

p(xi; Vi Hi' Pi, )li; ti; X1y Yr» HT' Pr) /11" tr)
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)

Conventional Appearance Capture

How to capture appearance characteristics?

= Measurement of reflectance samples ik ‘
* Irregular e .

 Occlusion

* Not measured

.
Y

.
s

5
TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios




Conventional Appearance Capture =

Separate geometry and reflectance reconstructions

C. Schwartz, M. Weinmann, R. Ruiters, and R. Klein, Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage, VAST 2011
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Conventional Appearance Capture =

Separate geometry and reflectance reconstructions

BTF Material

also in 3D

L&v

octree generatiof tangent field
computation }

- - Schwartz et al. 2011
C. Schwartz, M. Weinma v : ed High-Quality Acquisition of Geometry an hltural Heritage, VAST 2011
S. Krumpen, M. Welnmann and R. Kleln OctreeBTFs A compact, seamless and distortion-free reflecta ! Computers & Graphics 2017

TU Delft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovatit et illenging Scenarios



Conventional Appearance Capture =

Photograph

Rendering

C. Schwartz, M. Weinmann, R. Ruiters, and R. Klein, Integrated High-Quality
Acquisition of Geometry and Appearance for Cultural Heritage, VAST 2011
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High-quality results, but ... =

Trade-off: Acquisition technology vs. expressiveness of models:

A )
expressiveness of
reconstructed model

[Haberet al. 200
b et

— T

efficient
measurements

: r -
uncontrolled
environments

[Aittala et a

setup complexity
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=3
How should we represent complex 3D scenes? €Y

/\ —
Are we done?
‘\

Unfortunately not ...
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Challenges sV

"’

Trade-off: Acquisition technology vs. expressiveness of models: ?

A )
expressiveness of
reconstructed model

controlled environment

ug

expensive

L low quality X = 0 lots of measurements
=R . PE S = (memory requirements)

’ time-consuming

[Aittalae a.=zo=-)

setup complexity
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How should we represent complex 3D scenes? €Y

Al ? ?




=

Al-based Scene Capture/Modeling S

what we have to provide
Traditional learning-based methods: —

: : def traiq‘:frﬁf—y ; train_IZEEi;::’
= Supervised learning train_data

# build a model for 1images -> labels...
retum@what we can get from our data

def predict(model, test_data ):
# predict test labels using the model...
test_labels

what we can do with our model

=  Problem:

y
TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios




Traditional learning-based methods:
= Supervised learning

Challenges:
 Different objects/scenes
» Different materials

e Different view conditions

 Different lighting conditions \

- Large datasets!
\
= Problem:

y
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Al-based Scene Capture/Modeling =

training data?
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How to get adequate training data? sV

Approaches: -
= Manual collection of labeled training data e R

= Time-consuming (too many configurations) K

= Costly (

= Use of virtual scenarios (e.g., Virtual KITTI 2 dataset, CARLA, etc.)
= Easyto label

5
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Al-based Scene Capture and Modeling &

capture and modeling? )

\QW?

| —

=
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...

= ... learntorecognize materials (e.g. to steer capture) .

s / =

S £

SRS /
"

M. Weinmann, J. Gall, R. Klein. Material classification based on
training data synthesized using a BTF database, ECCV, 2014

= ...learn feature correspondences

P. Truong, M. Danelljan, L. Van Gool, R. Timofte. Learning Accurate
Dense Correspondences and When to Trust Them, CVPR, 2021
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ... (R, G, B) _>III_> d
= _..learnto estimate geometry from a single image
(also used for SLAM ...) Loss components:
* Depth / depth relations
Training data: RGB + Depth pairs *  Surface normal

e @Gradient information

Predictions:

NYU Depth V2 dataset

https://paperswithcode.com/task/monocular-depth-estimation

y
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What can we do with pre-trained models? <Y

Various applications:

= Turning pictures into 3D experiences
(= geometry estimation from a single image + warping + inpainting)

Joseph Redmon, CSE455: Computer Vision, University of Washington
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What can we do with pre-trained models? <Y

. surface normals
Given adequate datasets, we can ... (R,G,B) — p fse component.

roughness

= ... learnto estimate reflectance
from a single image

= CombineAl...
= . andCG

Renderer

Input * Prediction

-
L
)

°
:

e

Ground truth

V Deschaintre, M Aittala, F Durand, G Drettakis, A Bousseau. Single-image svbrdf capture with a
rendering-aware deep network, ACM Transactions on Graphics, 2018
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...
= _..learnto synthesize novel views from 2 input views

extremely
sparse-vie
scenario ...

Rochow, Schwarz, Weinmann, Behnke. FaDIV-Syn: Fast Depth-Independent View Synthesis using
Soft Masks and Implicit Blending, RSS, 2022
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...
= _..learnto synthesize novel views from 2 input views

o fiedg 11| p=11{e

XN

(a)l Scene & Projection Geor‘netry ........... (b)'/(ojectedlmages .......... (c) FaDIV-Net
depth of object = where projections align best

Rochow, Schwarz, Weinmann, Behnke. FaDIV-Syn: Fast Depth-Independent View Synthesis using
Soft Masks and Implicit Blending, RSS, 2022
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...
= _..learnto synthesize novel views from 2 input views

1.5m 1.4m 1.3m

Fig. 6: Self-supervised soft masking. Predicted image (left) and learned mask activations (right). The masks are normalized (dark = high
activation). The PSV layer depth is up to scale. Note how the learned masks correlate with depth in the scene.

Rochow, Schwarz, Weinmann, Behnke. FaDIV-Syn: Fast Depth-Independent View Synthesis using
Soft Masks and Implicit Blending, RSS, 2022
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...
= _..learnto synthesize novel views from 2 input views

Rochow, Schwarz, Weinmann, Behnke. FaDIV-Syn: Fast Depth-Independent View Synthesis using
Soft Masks and Implicit Blending, RSS, 2022
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What can we do with pre-trained models? <Y

Given adequate datasets, we can ...
= .. learnto synthesize novel views from 2 input views

accurate synthesis

of nearby views
geometric representation
could be more accurate

fast

FaDIV-Syn: Fast Depth-Independent View Synth
using Soft Masks and Implicit Blending

[1:3 dependence on character-
__ istics of training data

Andre Rochow*, Max Schwarz*, Michael Weinmann™, and Sven Behnke*

*: University of Bonn
*: Delft University of Technology

Rochow, Schwarz, Weinmann, Behnke. FaDIV-Syn: Fast Depth-Independent View Synthesis using
Soft Masks and Implicit Blending, RSS, 2022
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Al-based Scene Capture and Modeling &

Can we avoid

\
\Qe-training models?

TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios



What can we represent based on Al? sV

Self-supervision for ... ight dir S —E
—>» view dir. flash 7,57 camera

= Reflectance estimation from a single image L R

- ~
- ~
-~ ~

= CombineAl... L7 S

-, for points 1n tile,

~
~
- light dir. ~ view. dir=~e ~
f:
= ...and CG _ ~surface to N
be captured

Current Images

SVBRDF estimate |[sveror| Render from N | xx.. | Differentiable neural texture comparison
light directions

( Iterative
update loop

Updates Refm 9 Gradients

-« SVBRDF «—
estimate

Aittala et al., Reflectance Modeling by Neural Texture Synthesis
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What can we represent based on Al? sV

Self-supervision for ...
= Geometry reconstruction from multiple views

Disparity Map

Other Views Plane-Sweep Volumes

P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, J.-B. Huang. DeepMVS: Learning Multi-View Stereopsis, CVPR, 2018
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i
represp=* -1asec
“\ \l T
\‘;» Neural Radiance Fields (

NeRFs)

<

Al Artists with Instant NeRF | NVIDIA

Y
TUDelft

[ TN
PSR VP L S PN S S
Reference Image

Refinement using DSS

Refinement using Ours

PSNR1:15.412,SSIM1:0.541 PSNR7:19.282,SSIM1:0.683
uller, M. Weinmann, and R. Klein. Unbiased Gradient Estimation for

ifferentiable Surface Splatting via Poisson Sampling, ECCV 2022

Differentiable Splatting
Techniques

i

R
" )““’*?wm .

https://www.bizzlogic.com/insights/gaussian-splatting
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https://www.nvidia.com/en-us/research/ai-art-gallery/instant-nerf/

=
Can we use Al to encode/represent whole scenes? &9)

Self-supervision for ...
= Novel view synthesis (= no need for additional datasets!)

Optimize/Predict

= |dea:

=  Train a model which overfits to
one object/scene!

Render

= Leverageinverse rendering setup

=  Assumption:
= Good results = expressive/accurate model
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Al-based Scene Representation & Visualization @

s

Neural Radiance Fields [Mildenhall et al. 2020]

oD Input Output Volume Rendering
Position +— Direcija — Rendering Loss
Ray 1 /—\
e | e |
2 Ray 2 /_\ 2
« i
\ Reay Distance ” ]

() (b) (c) (d)

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., Ng, R..
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020
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Al-based Scene Representation & Visualization GGJQ)

Neural Radiance Fields [Mildenhall et al. 2020]:
= Blurryresults ...

NeRF (Naive)

5
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Al-based Scene Representation & Visualization @

Neural Radiance Fields [Mildenhall et al. 2020]: (x,7) —>III—> (R,G,B)

= How to get MLPs to represent high-frequency functions?

Ground truth image Standard fully-connected net

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., Ng, R..
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020
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Al-based Scene Representation & Visualization GGJO)

Neural Radiance Fields [Mildenhall et al. 2020]: (x,7) —>III—> (R,G,B)

= How to get MLPs to represent high-frequency functions?

Ground truth image Standard fully-connected net ~ With “positional encoding”

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., Ng, R..
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020
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Al-based Scene Representation & Visualization @

Neural Radiance Fields [Mildenhall et al. 2020]:
ol ©
= |mprovement for
hl h'fre uenc sin(x), cos(x
g q y sin(éx)), cos((2)x)

embedding of input sin(4x), cos(4x)

sin(2Vx), cos(2Vx)

NeRF (Naive) NeRF (with positional encoding)
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Al-based Scene Representation & Visualization @

Results

32

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., Ng, R..
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020
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Al-based Scene Representation & Visualization GG&O)

. . = p(a)
Extension to unconstrained photo collections ... R
9
directio?'l . . RGIB .
~ -
/ (7) uncertainty
L :

Martin-Brualla et al., NeRF in the Wild - Neural Radiance Fields for Unconstrained Photo Collections
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Al-based Scene Representation & Visualization &é@

... close to real-time ...

il

one of the input images

live training
Midller, T., Evans, A., Schied, C. and Keller, A., Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH, 2022

ry
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Al-based Scene Representation & Visualization @

... close to real-time ...

OV
-

Al Artists with Instant NeRF | NVIDIA

5
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https://www.nvidia.com/en-us/research/ai-art-gallery/instant-nerf/

=0
Can we use Al to encode/represent whole scenes? @\)

Results:

= Dense reconstruction
(ideally surfaces ...)

= Preservation of details

= |nspection under
novel views

Images taken from Alex Trevithick and Bo Yang. GRF: Learning a General
Radiance Field for 3D Scene Representation and Rendering
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Al-based Scene Representation & Visualization Gﬁ:’\)

Current trend: Back to explicit 3D representations
= Keep optimizer, but replace neural network —> 3D Gaussian Splatting

ttps: //www linkedin.ge/pulse/3d-scene- Worth 1000- splat' JRTEN

a2 ‘LL H" I‘l "

https://towardsdatascience.com/a-comprehensive-
overview-of-gaussian-splatting-e7d570081362

B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis.
3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023

y
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Al-based Scene Representation & Visualization @

Camera
/ Projection ‘s
I : l/ Differentiable | —p
I | Image
nitialization | —» \ Tile Rasterizer ffo— 5
Adaptive A/
3D Gaussians ; PC |
Density Contro —p Operation Flow — Gradient Flow

1) Initialization
(e.g., via SfM)

B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis.
3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
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Al-based Scene Representation & Visualization @

Projection \
e ‘\
o S, Differentiable | —»
i, — * Initialization / Tile Rasterizer ‘ Image
L
SfM Points 3D Gaussians A'.japéwe |
Density Contro — Operation Flow  — Gradient Flow

2) Create a set of Gaussians

B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis.
3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
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Al-based Scene Representation & Visualization @

Camera

Projection \

e ‘\
o S, Differentiable | —»
i,y T Initialization | —» / Tile Rasterizer ¢ age
L
SfM Points 3D Gaussians A'.japéwe
Density Control — Operation Flow Gradient Flow

3) Optimization and adaptive control of the
density of this set of Gaussians
(involves tile-based renderer)

B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis.
3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
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accurate novel view
synthesis

Al-based Scene Represen

Current trend: Back to explicit 30
= Keep optimizer, but replace neu

[I;g lots of views (with camera
_ parameters) required

)
https://www.magnopus.com/blog/the-rise-of-3d-gaussian-splatting

https://www.bizzlogic.com/insights/gaussian-splatting

B. Kerbl, G. Kopanas, T. Leimkuhler, G. Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
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Al-based Scene Capture sV
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Remaining Limitations =

lacking robustness to distractors

Challenges for NeRFs [ Gaussian Splatting:

cannot handle mirroring scenes

.

N

blurred frames

occluders

noisy camera poses

limitation to RGB-based scene representation

Gaussian Splatting (20 views)
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/j
Al-based Scene Capture sV
/w0 address

the aforementioned

Qnitations?
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Robustness to Distractors @

Observation:

* NeRFs suffer from artifacts by distraction and occlusion

NeRF

Floaters

B. Buschmann, A. Dogaru, E. Eisemann, M. Weinmann, B. Egger,
RANRAC: Robust Neural Scene Representations via Random Ray Consensus, ECCV 2024
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Robustness to Distractors Gﬁ:’\)

ldea:

= Qutlierfiltering via RANSAC-like scheme
Random Ray Consensus (iterative subset evaluation)
= Sampling of observations from the images with camera poses
= Fitting of hypothesis/model
= Use obtained model to render images for unused input views
= Hypothesis validation (= inlier/outlier classification)
= Selection of model with most inliers and re-estimation of model based on this consensus set

B. Buschmann, A. Dogaru, E. Eisemann, M. Weinmann, B. Egger,
RANRAC: Robust Neural Scene Representations via Random Ray Consensus, ECCV 2024
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Robustness to Distractors Gﬁ:")

|dea:
= Qutlierfiltering via Random Ray Consensus (iterative subset evaluation)
NeRF RobustNeRF RANRAC Ground Truth*
(Sabour et al.) (Ours)

Remove Artifacts I | Better Preservation of Concave Details |

B. Buschmann, A. Dogaru, E. Eisemann, M. Weinmann, B. Egger,
RANRAC: Robust Neural Scene Representations via Random Ray Consensus, ECCV 2024
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Robustness to Distractors Gﬁ:’\)

NeRF RobustNeRF RANRAC Ground Truth
Robustness to noisy poses (Sabouretal)  (Ours)

B. Buschmann, A. Dogaru, E. Eisemann, M. Weinmann, B. Egger,
RANRAC: Robust Neural Scene Representations via Random Ray Consensus, ECCV 2024
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. . =3
Sparse-view Scenarios L &5\)

Why do NeRF and GS perform so bad?
too few views per scene part?

(almost) nadir views = too constrainéé\
camera configuration?

COLMAP

saussian Splatting

O )

D. Haitz, M. Hermann, A. S. Roth, M. Weinmann, M. Weinmann. The Potential of Neural Radiance Fields
and 3D Gaussian Splatting for 3D Reconstruction from Aerial Imagery, ISPRS Annals, 2024

TUDelft M. Weinmann, The Potential of Al for 3D Scene Digitization - Recent Learning-Based Innovations on Handling Challenging Scenarios



. . =
Sparse-view Scenarios @\)

Observation:

= NeRFs and Gaussian splatting produces a lot of noise for configurations
with only a few views

Can we improve robustness to
handle sparse-view scenarios?

GS (20 views)

Wang et al., PriNeRF, Prior-constrained Neural Radiance Fields for
B. Buschmann, E. Eisemann, M. Weinmann. Robust Novel View Synthesis of Urban Scenes with Fewer Views,
ongoing work on robust sparse-view Gaussian splatting ISPRS Journal on Photogrammetry and Remote Sensing, 2024
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Handling Sparse-view Scenarios @\)

Potential solution for few-shot capture

* Integration of neural inference of 2D-3D mappings, 3D Gaussian Splatting and
camera refinement

GS (20 views) Ours (20 views)

Improved practical relevance!

B. Buschmann, E. Eisemann, M. Weinmann. (robustness, few-shot, less priors, ...)

ongoing work on robust sparse-view Gaussian splatting
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Handling Sparse-view Scenarios sV

Potential solution for few-shot capture
= Scene priors > feature space (beyond RGB)

»  Projection of sampling points on the ray emitted from the target view into the reference views
= Obtainthe features in the reference views by interpolation

Wang et al., PriNeRF, Prior-constrained Neural Radiance Fields for
Robust Novel View Synthesis of Urban Scenes with Fewer Views,
ISPRS Journal on Photogrammetry and Remote Sensing, 2024
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Handling Sparse-view Scenarios sV

Potential solution for few-shot capture
= Scene priors > feature space (beyond RGB)

views poses —>

Volume Rendering

target view pose —> —> target rays > D[II] <
Sampling '
(a) L‘ Projection V) =% J\.’s
: NeRF
[ e B ray distance
T Ty - P —>n
. (o lingd
g = '
: - DDDD : : Photometric Loss
% Feature Extraction —*‘ ‘“"‘.' f

colory, COIOT enger

(c)

reference

reference views feature maps

2

Feature extraction module:
» extracts deep features of the
reference view Image Wang et al., PriNeRF, Prior-constrained Neural Radiance Fields for

* aggregates the features under Robust Novel View Synthesis of Urban Scenes with Fewer Views,
different reference views as priors ISPRS Journal on Photogrammetry and Remote Sensing, 2024
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Handling Sparse-view Scenarios sV

Potential solution for few-shot capture
= Scene priors > feature space (beyond RGB)

reference views poses —> —> reference rays
I ‘ ll’
; Gooncug & IPE
target view pose —> —> target rq —>

O,
(@ E Projocion Y E@y) —> I:":":I IJ—\,:
‘ =1

NeRF
[ = ;
w "*= ray distance
' 9 [ gl 3}
| DDDD 3 Photometric Loss
I 2
] s o [ o H
N N| priors (7 R i
reference views reference |

feature maps

o o color,, COlOT enger
NeRF takes the scene priors along with
position and orientation encodings to
generate color and opacity

Wang et al., PriNeRF, Prior-constrained Neural Radiance Fields for
Robust Novel View Synthesis of Urban Scenes with Fewer Views,
ISPRS Journal on Photogrammetry and Remote Sensing, 2024
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Handling Sparse-view Scenarios sV

Potential solution for few-shot capture
= Scene priors + camera refinement

Ground Truth BungeeNeRF

(d} Greenland Xindu Mall, Hefel.

Wang et al., PriNeRF, Prior-constrained Neural Radiance Fields for
Robust Novel View Synthesis of Urban Scenes with Fewer Views,
ISPRS Journal on Photogrammetry and Remote Sensing, 2024
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Handling Scenes with Mirroring Surfaces s

Idea: Leverage inconsistencies in observations for mirroring surfaces

= Allows detection and handling of mirrors

‘ ‘ ‘\Qg | [ peman ,, Prmary \u o
- | il ¢ — Ree > <« e :ﬂ\a'
'\%——> @_’ R?;c};ca n_) \]]R Rcﬂ%cﬁ > NeRF —» Reflected \%1:“““’““‘

Rays 31 Model <-4 Ray

T_quqd Per-Pixel Point Segmented stoparac RGB = e
S Scores Cloud Shapes :
= S T A
> Mirror > 3
2 Parameters .4 ........................... Miror SN J BM
Rendered (b) 3D Shape Detection Masks
Depth
S . _J
(a) NeRF Training + (c) Training with explicit —> Dependency
Reprojection Loss surface geometry - Gradient

L. V. Holland, M. Weinmann, P. Stotko and R. Klein, NeRFs are Mirror Detectors:
Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives, WACV 2025
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Handling Scenes with Mirroring Surfaces

Idea: Leverage inconsistencies in observations for mirroring surfaces

= Allows detection and handling of mirrors

P
Traini

Imaggy

|
*\

=

-

.

— ‘ l
1&
: Primary
' Primary —> Ray !
| ) Rays —>] <¢*1 RGB
—» Rendered \'. 3] g‘ ¢ :
RGB B : Reflected > NeRF ~—» Reflected
— . : Rays 1 Model ¢ Ray
NeRF _), P-Pixel Point Segmented stopgrad RGB
Model - : qres Cloud Shapes !
> ) I > Mirror pi ALk
2 Parameters 4 ........................... Mirror
Rendered (b) 3D Shape Detection Masks
Depth
J N
(a) NeRF Training + ] — (c) Training with explicit
Reprojection Loss Standard NeRF with additional surface geometry

depth reprojection loss

L. V. Holland, M. Weinmann, P. Stotko and R. Klein, NeRFs are Mirror Detectors:
Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives, WACV 2025

Y
TUDelft

._)' )
- Composite
RGB
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Handling Scenes with Mirroring Surfaces s

Idea: Leverage inconsistencies in observations for mirroring surfaces

= Allows detection and handling of mirrors

‘ ‘ (i : —, ( l ) N
‘ = . Primary .
- | \ | ' Rays ’ €1 RG};a \ :‘1 \M‘
. % —» Rendered — \'.- i R | A _
' RGB | : Reflected [——> NeRF ~—> Reflected ¢ : Composite
| | Rays 1 Model ¢ Ray \%& RGB

—>
Posed NeRF e @ Per-Pixel Point Segmented stopgrad RGB — e
Traini ) il :
T Modet | ) ' Scores Cloud Shapes 3
Images - * + - S
> Mirror pi AA
2 Parameters 4 ........................... Mirror WL g BN =
Rendered (b) 3D Shape Detection Masks
Depth
\ >/ o Ly
(a) NeRF Training + . . (c) Training with explicit —> Dependency
RCPijCCﬁOﬂ Loss CompUtat|On Of pe r'pIXE| scores surface geometry - Gradient
(using SSIM and depth variance values)

L. V. Holland, M. Weinmann, P. Stotko and R. Klein, NeRFs are Mirror Detectors:
Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives, WACV 2025
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Handling Scenes with Mirroring Surfaces s

Idea: Leverage inconsistencies in observations for mirrori
= Allows detection and handling of mirrors

1)
o1 | e

Reflected ——> NeRF -~ Reflected ¢l
> Rays -1 Model ¢+ Ray ©
RGB
Training stopgr ac
Images
Rendered . HNN | | Parameters @--seeeeserersesrsssansnsand
3D Shape Detection
Pt (b) pe
- >/
(a) NeRF Training + (c) Training with explicit
Reprojection Loss surface geometry

modified pipeline to jointly optimize NeRF and mirror parameters
L. V. Holland, M. Weinmann, P. Stotko and R. K| by blending primary and reflected images based on anti-aliased
Using Structural Similarity for Multi-View Mirre mirror masks that are generated in differentiable manner

Y
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Handling Scenes with Mirroring Surfaces s

Idea: Leverage inconsistencies in observatlons for mlrrorlng surfaces

Best Baseline Ground Truth
Mip-NeRF 360 [-

Best Baseline Ours Ground Truth
MS-NeRF [112] MS-NeRF [ Ours Ground Truth

PSNR: 33. 55 dB PSNR: 35.27 dB

L. V. Holland, M. Weinmann, P. Stotko and R. Klein, NeRFs are Mirror Detectors:
Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives, WACV 2025
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Semantics-informed Scene Representation GG;O)

ldea:

= Scenerepresentation with semantics
e.g. Gaussian Splats + Segment Anything

Ground truth (Multi- Rendered Gaussian Rendered Segmentation Distilled feature fields
view input frames) Splats maps (Object-lds for scene editing)

5
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Extension to Multi-Spectral Scene Representation Gﬁ:’\)

ldea:
= Representations per sub-band combined with material-wise shading model

Initialize normal + common reflectance
parameters (iteration >= warm-up iteration)

R s~

}

Initialization

I

Segmentation maps per sp

Camera
~N ‘6 &g@ Add full-spectra
450 nm 500 nm parameters to Spectral
BRDF parameters Gaussian Model
. . g Ao R~ €22
. . = Spectral Gaussian Light ) l »
- —) % —) S8
* e Model + Gaussians rendered in each 550 nm 650 nm
. ¢ Distilled feature spectra (Differentiable tile BRDF parameters
fields rasterizer) *
SFM points / o 700nm 750 nm Leght
Ral'l.dOI'l'l ok | Multiview images in different +
initialization @ - spectra (Ground truth) Distilled Feature field
|

Loss (computed against ground truth images)

S. N. Sinha, J.KlUhn, H. Graf, M. Wemmann. SpectralsplatsVIewer: An Interactive
Web-Based Tool for Visualizing Cross-Spectral Gaussian Splats, Web3D, 2024

S. N. Sinha, H. Graf, M. Weinmann. SpectralGaussians: A relightable spectral Gaussian splatting
framework to generate photorealistic semantic Gaussian splats in different spectra, ongoing work
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Extension to Multi-Spectral Scene Representation Gﬁ:’\)

ldea:
= Representations per sub-band combined with material-wise shading model

m . @ & ﬁ é & Full-spectra
ahddsd -

N N

aeodsd DERE

GO d@ead 580

TIIIIE E=

BRDF Parameters

Segmentation : i . .
E Distilled Feat: . .
Grou(r(lsdT)t ruth Rgr::[e);«id (from SAM GT B lfiel dia ure (Diffuse, Diffuse-color, Specular, Specular-color, Roughness, Environment Lights

segmentation Maps) Normal)

500 nm

S. N. Sinha, H. Graf, M. Weinmann. SpectralGaussians: A relightable spectral Gaussian splatting
framework to generate photorealistic semantic Gaussian splats in different spectra, ongoing work
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Extension to Multi-Spectral Scene Representation

=

V

Results:

9 Full spectra

£
by
Specular color l“ *fi Points

Pixel
comparator

Diffuse color E Normals Roughness

S. N. Sinha, J.KlUhn, H. Graf, M. Weinmann. SpectralSplatsViewer: An Interactive
Web-Based Tool for Visualizing Cross-Spectral Gaussian Splats, Web3D, 2024

S. N. Sinha, H. Graf, M. Weinmann. SpectralGaussians: A relightable spectral Gaussian splatting
framework to generate photorealistic semantic Gaussian splats in different spectra, ongoing work
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Method Spectral NeRF Synthetic Dataset[27] Average
kitchen | Living room | Digger | Spaceship | Vintage car | Cartoon knight
PSNR 1
NeRF[7] 34.583 33.172 30.658 30.126 33.478 | 34.485 32.400
Mip-NeRF[8] - - 33.301 31.495 33.883 35.102 33.945
Aug-NeRF[37] 34.480 ‘ 32.540 ‘ 31.538 ‘ 30.029 33.630 33.008 32.677
SpectralNeRF[27] | 35.115 33.665 33.378 31.951 34.480 34.915 33.610
QOurs 37.035 37.989 40.218 41.233 42.636 36.723 38.456
SSIM 1
NeRF[7] 0.8943 0.9929 0.9187 0.9358 0.7958 | 0.9273 0.9123
Mip-NeRF[8] - - 0.9200 0.9475 0.8166 0.0572 0.0126
Aug-NeRF[37] 0.9026 0.9649 0.92438 0.9402 0.8002 | 0.9287 0.9163
SpectralNeRF[27] | 0.9117 0.9931 0.9357 0.9482 0.8169 0.9573 0.9349
Ours 0.9747 0.9733 0.9923 0.9051 0.08903 0.0572 0.9801
LPIPS |
NeRF[7] 0.1650 0.0578 0.0413 0.0275 0.1319 0.1545 0.0722
Mip-NeRF[8] - - 0.0435 0.0535 0.1747 0.1526 0.1061
Aug-NeRF[37] 0.1603 0.0706 0.0341 0.0389 0.1536 ‘ 0.1705 0.0973
SpectralNeRF[27] | 0.1637 0.0479 0.0259 0.0250 0.1499 0.1510 0.0733
Ours 0.0739 0.0525 0.0109 0.0084 0.0527 0.0741 0.0438




Further Trends Gﬁ:’o

Tighter integration of context into inference/capture

= ... behavioral patterns

) ) ) activity maps and action recognition i
hybrid (static+dynamic) J huma: aware placement
; J. Tanke et al., Bonn Activity Maps: Dataset Description, of service robots
SCENE representat|on arXiv preprint arXiv:1912.06354, 2019

L. Bruckschen, K. Bungert, M. Wolter, S. Krumpen, M. Weinmann, R. Klein, M.
Bennewitz. Where can i help? Human-aware placement of service robots,
International Conference on Robot and Human Interactive Communication, 2020

L. V. Holland, P. Stotko, S. Krumpen, R. Klein, M. Weinmann. Efficient
3D Reconstruction, Streaming and Visualization of Static and Dynamic
Scene Parts for Multi-client Live-telepresence in Large-scale
Environments, ICCV Workshops 2023
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Further Trends | G
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(a) time-reversible flow(Re = 2,u =1,p=1)

— _ (a) Interferes

(b) laminar flow (Re = 20, u = 0.1,p= 1)

Dt _

-
—
(c) laminar vortex street(Re = 100, 4 = 0.1,p = 1)

Combination with simulations

3l
| l\li

_. = (b) Doppler effect of an oscillat ing 10 the right
(d) turbulent flow(Re = 1000, = 0.1, p = 10)
p (e) turbulent flow (Re = 10000, 4 = 0.01,p = 10)
Figure 5: Flow and pressure fields around a cylinder obtained by o rmclPlelLllTn.lR) I|numhcr\bm ide: Imly

mag itude; Right side: pressure fi Id S2d it e o Velod city field. An animated real-tin ation of these experime)
is provided in the supplementary video. (c) Wave reflectiol

Physics-informed machine Iearning

interactive simulation of
teractive simulation o N. Wandel, M. Weinmann, R. Klein. Learning Incompressible Fluid Dynamics from

material dappearance Scratch-Towards Fast, Differentiable Fluid Models that Generalize, ICLR 2021
N. Wandel, M. Weinmann, R. Klein. Teaching the incompressible Navier—Stokes
S. Krumpen, M. Weinmann, R. Klein. Interactive Appearance Manipulation of equations to fast neural surrogate models in three dimensions, Physics of Fluids, 2021
Fiber-based Materials, International Conference on Computer Graphics N. Wandel, M. Weinmann, M. Neidlin, R. Klein. Spline-PINN: Approaching PDEs
Theory and Applications 2017 without data using fast, physics-informed Hermite-spline CNNs, AAAI 2022
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Further Trends Gﬁ:")

Editable representations
= Semantic scene stylization

B e~ ’

|-=-=-=======——— - stylizedrenderings = = = = = = = = = = = = = | Original rendering

S. N. Sinha, H. Graf, M. Weinmann. SemanticSplatStylization: Semantic scene stylization
based on 3D Gaussian splatting and class-based style transfer, GCH 2024
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Summary sV

Robust extensions of NeRFs and Gaussian Splatting

robustness to distractors

2021 () (ECCV'24)

robustness in sparse-view scenarios
ongoing work, ISPRS Journal of P &RS'24)

Camera Poses

Occlusions  Blurred Frames ~ Camera Poses

extension to
multi-spectral scene representation
(Web3D, arxiv)
W T
Ry A ,

Best Baseline Ours Ground Truth
MS-NeRF [112]
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Conclusions sV

Al ...
= .. offers breakthrough potential for numerous applications
= ...leads to paradigm shift in capture technology
= ... will make us re-think conventional processes
= ... will help to tackle more challenging scenarios
But .
= ...cannotsolve everything
= ...may be outperformed in certain conditions
= ... may benefit from coupling to traditional principles
= _..we should not forget to use natural intelligence
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Thank you for your attention! sV

/f‘/}r i

/Questions? \

. More Information?
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| Michael Weinmann
‘ TU Delft, Netherlands

m.weinmann@tudelft.nl
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